\qquad
Major Exam 2
There are six questions in this exam. Answer all questions. Time is of essence, use it wisely!
[CLO-1] Q1. [4] Illustrate trees/heap at each step for the following:
(a) Build a Priority Queue using a min-Binary Heap for the following data $10,13,22,16,8,7$.

(b) Remove three elements from the above Priority Queue. Highlight which nodes you decide to sink or swim and re-draw the heap at each step. remove 7 .

remove 8

remove 10

[CLO-3] Q2. [3] Observe the following Binary Search Tree. Convert this tree to a AVL tree. Redraw the tree every time you decide to rotate it. Highlight the rotation type (case) for each rotation.

Q3. [2] Write a recursive method public boolean isAVL (AVLNode A) to check if a tree with root at A is AVL. Assume all heights are included in the tree.

```
public boolean isAVL(AVLNode A)
{
    //This method is called only after setHeights(A) has been called..
    if(A.height<2)
    return true;
    else if(A.left==null)
    return A.right.height + 1 < 2 ? true : false;
    else if(A.right==null)
    return A.left.height + 1 < 2 ? true : false;
    else if(isAVL(A.left) && isAVL(A.right))
    return Math.abs(A.left.height - A.right.height)<2 ? true : false;
    else
    return false;
}
```

[CLO-2]Q4. [2] Show how the array would be sorted using SelectionSort. Trace all compare and swap operations.

M	I	D	T	E	R	M	E	X	A	M
A	I	D	T	E	R	M	E	X	M	M
	D	I	T	E	R	M	E	X	M	M
		E	T	I	R	M	E	X	M	M
			E	I	R	M	T	X	M	M
				I	R	M	T	X	M	M
					M	R	T	X	M	M
						M	T	X	R	M
							M	X	R	T
								R	X	T
									T	X

[CLO-4] Q5. [2] Consider a hash table of size 7 storing entries with integer keys. Suppose the hash function is $\mathrm{h}(\mathrm{k})=\mathrm{k}$ mod 7 . Insert, in the given order, entries with keys $5,11,18,23,28,13,25$ into the hash table using linear probing to resolve collisions. Show all the work and fill the array \mathbf{A} accordingly.

A

28	13	23	25	11	5	18
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$

k	$\mathrm{h}(\mathrm{k})$	Probes	
5	5		
11	4		
18	4	11	5
23	2		
28	0	18	
13	6	11	5
25	4	18	28

Q6 [2]. What is the run time (Big Oh notation) for the following operations in given data structures?

- Insertion of a key in Priority Queue implemented using a min-heap _O(log n) \qquad
- Worst case scenario for Removal of a key in Hash table implemented using Probing _O(n) \qquad
- Number of swap operations using Insertion Sort in a pre-sorted array \qquad 0 -> O(1) \qquad
- Best case scenario for removal of a node from a BST \qquad O(1) \qquad
- Average number of comparisons in selection sort \qquad $n^{2} / 2$->___O(n2) \qquad
- Average number of element swaps in bubble sort \qquad $\mathrm{O}\left(\mathrm{n}^{2}\right)$ \qquad

