Dept. of Computer Science
 Data Structures (CS210)
 $1^{\text {st }}$ Semester, 2019-20

 Major Exam 1

 Major Exam 1}

Time: 60 minutes
Question 1. (4+3+3=10 marks)
(a) Write the method removeLast for the singly-linked list discussed in the class. The method removes the last node in the list. The singly-linked list maintains the size, the references to the head and tail of the list. [4 marks]

void removeLast() \{

(b) Write statements to insert the node tmp after the node p in the doubly-linked list. Assume that each node has a next and prev data members to hold references to next and previous nodes in the list. [3 marks]

(c) Write a method for the circular singly-linked class that displays all the data elements in the list. Assume that the size of the list is not being maintained. [3 marks]

Question 2. (2 $+3+1+1+6=13$ marks $)$
(a) How many times is the count++ executed in the following code segment? [2 marks]

```
count = 0;
for(int i = 1; i < 10; i++) {
    count++;
}
```

(b) What is the runtime for the following code snippet? Give the runtime as an equation $T(n)$ based on estimation and the Big-Oh notation. [3 marks]

```
1. s = 0;
2. for (int i = 0; i < n; i++)
3. for (int j = i; j < n; j++)
4. s = s + 1;
```

(c) Which of the following two algorithms has a better time complexity:
(i) algorithm A with a step count function $2^{100}+\log n^{100}$
(ii) algorithm B with step count function $n+2 \log n$. [1 mark]
(d) Which of the following two algorithms has a better time complexity:
(i) algorithm A with a growth rate $O\left(n^{2}\right)$
(ii) algorithm B with a growth rate $O(n \log n)$. [1 mark]
(e) For what values of c and n_{0}, the function $f(n)$ is $\mathrm{O}\left(n^{3}\right), g(n)$ is $\mathrm{O}\left(n^{2} \log (n)\right)$.([6 marks]
(i) $f(n)=4 n^{3}+6 n^{2}+2 n+1$
(ii) $\quad g(n)=n^{2} \log \left(10 n^{4}+7\right)-3 n$

Question 3 (7 marks)

(a) Write a recursive method to sum the odd-integer-values in an array. What is the best-case and worstcase time complexity of the method? For example for an array [1, 2, 3, 4, 5, 6, 7], the sum of all oddelements is 16 . [3.5 marks]
(b) Show the trace for the following recursive method; estimate the run-time complexity as given an appropriate Big-Oh notation. For tracing use the top-level call: recur (32) [3.5 marks]

```
int recur (int n) {
    if (n == 1)
        return 0;
    return 1 + recur(n / 2);
}
```

