CS210 Data Structures (201) Final Exam

Name: \qquad ID \qquad

Check your section:

Dr. Sara Shaheen at Morning 10 AM	Dr. Basit Qureshi
Dr. Sara Shaheen at Afternoon 2 PM	Dr. Muhammad Akour
Dr. Sawsan Alhalawani on Sunday	Dr. Zahid Khan
Dr. Sawsan Alhalawani on Monday	

Instructions:

- This exam contains four questions with multiple parts, on $10+1$ sheets of papers
- DONOT detach the scratch-sheet
- Time allowed: 120 minutes
- Closed Book, Closed Notes.
- Use of Calculators is ALLOWED. Use of other computing devices / smartphones etc is strictly prohibited.
- Answer the problems on the exam sheets only. No additional attachments would be accepted.
- DO NOT write on the backside of a page/sheet; the back of a page will NOT be graded.
- When the "time is over" is called, it is the students' responsibility to submit his exam to the invigilator. Submitting completed exam 3 minutes after the "time is over" will incur a penalty of $\mathbf{5}$ points.

Few gentle reminders:

- If you get stuck on some problem for a long time, move on to the next one.
- You should be better off by first reading all questions and answering them in the order of what you think is the easiest to the hardest problem.
- Keep the points distribution in mind when deciding how much time to spend on each problem.

Question No.	Part a	Part b	Part c	Part d	Student's Score
Question 1					$/ 13$
(CLO 1)					$/ 8$
Question 2 (CLO 2)					$/ 16$
Question 3 (CLO 3)					$/ 3$
Question 4 (CLO 4)					$/ 40$
Total					

Question 1. $[2+4+3+4=13$ points]
Part a. [2 points] Given the following directed graph, draw/show the adjacency-list to store this graph.

Part b. [4 points] Show the result of the DFS and BFS on this graph (part a). For path resolution, assume a lower order letter in alphabet chronology comes before a higher order (e.g. A comes before Z). Use appropriate Data Structures to support your response. Show your work!
-Depth-First-Search

Part c. [3 points] Draw the binary tree given in this array.

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13
element	$\mathbf{9}$	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{1}$	$\mathbf{6}$		$\mathbf{1 4}$			$\mathbf{4}$	$\mathbf{7}$			$\mathbf{1 3}$

What do you have to do to convert this tree to AVL? Show the tree after appropriate rotations. Identify what type of rotation?

Now insert a new node (8) in this tree. Show the tree after appropriate rotations. Identify what type of rotation?

Part d. [4 points] We need to store images in an efficient data structure. The following is a max-heap of images. Each image is annotated with a String text-label which is to be used to compare items. (example: "BAG" comes before "BAT").

Remove an image from this heap. What image is returned? Show the resulting heap.

Add
 (Spoon) to this heap. Show the resulting heap.

Question 2. [4+4=8 points]
Part a. [4 points] Answer the following Multiple Choice Questions

Problem	Answer
1. Given the following sequence: $\{2,3,5,6,9,11,15\}$. Which sorting algorithm will take the most time (number of comparisons)? Consider typical implementations of sorting algorithms. a. Insertion Sort b. Selection Sort c. Heap Sort d. Merge Sort	
2. Given the following sequence: $\{2,3,5,6,9,11,15\}$. Which sorting algorithm will run in $O(n)$ time (n comparisons)? a. Insertion Sort b. Selection Sort c. Heap Sort d. Merge Sort	
3. Given the following sequence: $\{2,3,5,6,9,11,15\}$, looking for 15 , the Binary Search algorithm will run in what time? a. $O(1)$ b. $O(\log n)$ c. $\mathrm{O}(\mathrm{n})$ d. $O(n \log n)$	
4. What sorting algorithm takes more space than the others? a. Insertion Sort b. Selection Sort c. Heap Sort d. Merge Sort	
5. Which of the following runs fastest? a. Searching for an element that is not in a singly linked list b. Sorting a pre-sorted array (same order) using heapsort c. Searching the value in the root of a AVL tree d. Emptying all elements from the stack	
6. Which of the following runs slowest? a. Searching for an element that is not in a singly linked list b. Sorting a pre-sorted array (same order) using heapsort c. Searching the value in the root of a AVL tree d. Emptying all elements from the stack	
7. Which of the following runs fastest? a. Searching a node in an AVL tree b. Searching a node in a skewed Binary Search Tree (all items are identical) c. Running Pre-order traversal algorithm on a BST d. Searching for an element in a circular linked list	
8. Which Graph implementation is most inefficient in terms of space $\mathbf{O}\left(\mathbf{V}^{2}\right)$ a. Adjacency List b. Adjacency Matrix c. Edge-List d. None of these	

Part b. [4 points] Sort the elements of the following array using top-down merge sort approach. Show all operations (Lo-mid-hi indexes and merge operations).

Cat	Bit	Hat	Mat	Rat	Bat	Hot	Bot	Sit

Note: In case you forgot your ABCs! use this to help you determine the order

Question 3. $[4+4+4+4=16$ points]
Part a. [4 points] The diagram below is a Circular-Doubly Linked List data structure. Provide the necessary code to add the new node pointed by P to the list. It does not matter where you add it. However, the list must be kept circular and doubly linked list.

Part b. [4 points] Assume an implementation of a STACK that holds integers. Write a method public void CountPosNeg (Stack S) that takes Stack S as a parameter. After the call, the method prints the count of positive integers and negative integers on the stack. Note, the original must not be destroyed. public void CountPosNeg (Stack S) \{

Part c. [4 points] Write a recursive method to check whether the Binary Tree Node passed as a parameter is actually a Binary-Search-Tree. The method takes a Node (root of the Binary Tree) as a parameter and returns a boolean (true or false) value.

```
public boolean isBST(Node Root){
```

Part d. [4 points] Find the Asymptotic complexity ($\operatorname{Big} \mathbf{O}$) for the following algorithms by computing the number of primitive operations:

```int k= 0; for (i = 1; i <= n; i++) { for (j = 1; j <= 5; j++) { k = k + i + j; } }```	
```int k= 0; for (i = 1; i <= n; i++) { for (j = i; j <= n; j++) { k = k + i } }```	
```public void print(int n){ int k = n; for (int i = 1; i <= n; i++) for (int j = 1; j <= k; j++) System.out.println(j+i); } public void main(){ Scanner Key= new Scanner(System.in); int n=Key.nextInt(); for (i = 1; i <= n; i++) print(n); }```	
```for (i = 1; i <= n; i*=2) { System.out.println(i); }```	

Question 4. [2 $+1=3$ points]
Part a. [2 points] Given a hash table of size 9 that stores integers. Suppose that the hash function used is $h(x)=x \bmod 9$. Using the separate chaining method to resolve collisions, insert the following in this Hash table.
$21,4,14,12,3,18,9$

Show the hash table. How many collisions were observed?

Part b. [1 points] Would it be better to use a Hash-table with linear-probing? Why or why not?
<Scratch sheet. DO NOT detach>

