
 / 10 1

CS210 Data Structures
(201) Final Exam

Name:__ ID________________________

Check your section:

� Dr. Sara Shaheen at Morning 10 AM
� Dr. Sara Shaheen at Afternoon 2 PM
� Dr. Sawsan Alhalawani on Sunday
� Dr. Sawsan Alhalawani on Monday

� Dr. Basit Qureshi
� Dr. Muhammad Akour
� Dr. Zahid Khan

Instructions:

• This exam contains four questions with multiple parts, on 10+1 sheets of papers
• DONOT detach the scratch-sheet
• Time allowed: 120 minutes
• Closed Book, Closed Notes.
• Use of Calculators is ALLOWED. Use of other computing devices / smartphones etc is strictly prohibited.
• Answer the problems on the exam sheets only. No additional attachments would be accepted.
• DO NOT write on the backside of a page/sheet; the back of a page will NOT be graded.
• When the “time is over” is called, it is the students’ responsibility to submit his exam to the invigilator. Submitting

completed exam 3 minutes after the “time is over” will incur a penalty of 5 points.

Few gentle reminders:

• If you get stuck on some problem for a long time, move on to the next one.
• You should be better off by first reading all questions and answering them in the order of what you think is the easiest

to the hardest problem.
• Keep the points distribution in mind when deciding how much time to spend on each problem.

Question No. Part a Part b Part c Part d Student’s Score
Question 1

(CLO 1)
 /13

Question 2
(CLO 2)

 /8

Question 3
(CLO 3)

 /16

Question 4
(CLO 4)

 /3

Total /40

 / 10 2

Question 1. [2 + 4 + 3 + 4= 13 points]

Part a. [2 points] Given the following directed graph, draw/show the adjacency-list to store this graph.

Part b. [4 points] Show the result of the DFS and BFS on this graph (part a). For path resolution,
assume a lower order letter in alphabet chronology comes before a higher order (e.g. A comes before
Z). Use appropriate Data Structures to support your response. Show your work!

-Depth-First-Search

-Breadth-First-Search

 / 10 3

Part c. [3 points] Draw the binary tree given in this array.

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13

element 9 3 10 1 6

14

4 7

13

What do you have to do to convert this tree to AVL? Show the tree after appropriate rotations.
Identify what type of rotation?

Now insert a new node (8) in this tree. Show the tree after appropriate rotations. Identify what type of
rotation?

 / 10 4

Part d. [4 points] We need to store images in an efficient data structure. The following is a max-heap
of images. Each image is annotated with a String text-label which is to be used to compare items.
(example: “BAG” comes before “BAT”).

Remove an image from this heap. What image is returned? Show the resulting heap.

Add (Spoon) to this heap. Show the resulting heap.

 / 10 5

Question 2. [4 + 4= 8 points]

Part a. [4 points] Answer the following Multiple Choice Questions

Problem Answer

1. Given	the	following	sequence:	{2,	3,	5,	6,	9,	11,	15}.	Which	sorting	algorithm	will	take	the	
most	time	(number	of	comparisons)?	Consider	typical	implementations	of	sorting	
algorithms.	

a. Insertion	Sort	
b. Selection	Sort	
c. Heap	Sort	
d. Merge	Sort	

2. Given	the	following	sequence:	{2,	3,	5,	6,	9,	11,	15}.	Which	sorting	algorithm	will	run	in	O(n)	
time	(n	comparisons)?		

a. Insertion	Sort	
b. Selection	Sort	
c. Heap	Sort	
d. Merge	Sort

	

3. Given	the	following	sequence:	{2,	3,	5,	6,	9,	11,	15},	looking	for	15,	the	Binary	Search	
algorithm	will	run	in	what	time?		

a. O(1)	
b. O(log	n)	
c. O(n)	
d. O(n	log	n)	

	

4. What	sorting	algorithm	takes	more	space	than	the	others?	
a. Insertion	Sort	
b. Selection	Sort	
c. Heap	Sort	
d. Merge	Sort	

	

5. Which	of	the	following	runs	fastest?	
a. Searching	for	an	element	that	is	not	in	a	singly	linked	list	
b. Sorting	a	pre-sorted	array	(same	order)	using	heapsort	
c. Searching	the	value	in	the	root	of	a	AVL	tree	
d. Emptying	all	elements	from	the	stack	

	

6. Which	of	the	following	runs	slowest?	
a. Searching	for	an	element	that	is	not	in	a	singly	linked	list	
b. Sorting	a	pre-sorted	array	(same	order)	using	heapsort	
c. Searching	the	value	in	the	root	of	a	AVL	tree	
d. Emptying	all	elements	from	the	stack	

	

7. Which	of	the	following	runs	fastest?	
a. Searching	a	node	in	an	AVL	tree	
b. Searching	a	node	in	a	skewed	Binary	Search	Tree	(all	items	are	identical)	
c. Running	Pre-order	traversal	algorithm	on	a	BST	
d. Searching	for	an	element	in	a	circular	linked	list	

	

8. Which	Graph	implementation	is	most	inefficient	in	terms	of	space	O(V2)	
a. Adjacency	List	
b. Adjacency	Matrix	
c. Edge-List	
d. None	of	these	

	

 / 10 6

Part b. [4 points] Sort the elements of the following array using top-down merge sort approach. Show
all operations (Lo-mid-hi indexes and merge operations).

Cat Bit Hat Mat Rat Bat Hot Bot Sit

Note: In case you forgot your ABCs! use this to help you determine the order

 / 10 7

Question 3. [4 + 4 + 4 + 4 = 16 points]

Part a. [4 points] The diagram below is a Circular-Doubly Linked List data structure. Provide the
necessary code to add the new node pointed by P to the list. It does not matter where you add it.
However, the list must be kept circular and doubly linked list.

Part b. [4 points] Assume an implementation of a STACK that holds integers. Write a method public
void CountPosNeg (Stack S) that takes Stack S as a parameter. After the call, the method prints the
count of positive integers and negative integers on the stack. Note, the original must not be destroyed.

public void CountPosNeg (Stack S) {

 / 10 8

Part c. [4 points] Write a recursive method to check whether the Binary Tree Node passed as a
parameter is actually a Binary-Search-Tree. The method takes a Node (root of the Binary Tree) as a
parameter and returns a boolean (true or false) value.

public boolean isBST(Node Root){

 / 10 9

Part d. [4 points] Find the Asymptotic complexity (Big O) for the following algorithms by computing
the number of primitive operations:

int k= 0;
for (i = 1; i <= n; i++) {
 for (j = 1; j <= 5; j++) {
 k = k + i + j;
 }
}

int k= 0;

for (i = 1; i <= n; i++) {
 for (j = i; j <= n; j++) {
 k = k + i
 }
}

public void print(int n){
 int k = n;
 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= k; j++)
 System.out.println(j+i);
}

public void main(){
 Scanner Key= new Scanner(System.in);
 int n=Key.nextInt();
 for (i = 1; i <= n; i++)
 print(n);

}

for (i = 1; i <= n; i*=2) {
 System.out.println(i);
}

 / 10 10

Question 4. [2 + 1 = 3 points]

Part a. [2 points] Given a hash table of size 9 that stores integers. Suppose that the hash function used
is h(x) = x mod 9. Using the separate chaining method to resolve collisions, insert the following in this
Hash table.

21, 4, 14, 12, 3, 18, 9

Show the hash table. How many collisions were observed?

Part b. [1 points] Would it be better to use a Hash-table with linear-probing? Why or why not?

-End of Exam

 / 10 11

<Scratch sheet. DO NOT detach>

