Name

Circle your instructor

Dr. Basis Qureshi

instructions:
This exam contains four questions with multiple parts, on 5 sheets of paper (last sheet is scratch-sheet)
NOTE: This solution provide one possible solution for questions in this exam. It is possible that your answer is correct but is not similar to this solution. Please check with your instructor how your exam was graded.

Dr. Zahid Khan

- Time allowed: 40 minutes
- Closed Book, Closed Notes.
- Use of Calculators and / or computing devices / smartphones etc is strictly prohibited.
- Answer the problems on the exam sheets only. No additional attachments would be accepted.
- DO NOT write on the backside of a page/sheet; the back of a page will NOT be graded.
- When the "time is over" is called, it is the students' responsibility to submit his exam to the invigilator. Submitting
completed exam 3 minutes after the "time is over" will incur a penalty of 5 points.

Few gentle reminders:

- If you get stuck on some problem for a long time, move on to the next one. However, the order might be different for you!
- You should be better off by first reading all questions and answering them in the order of what you think is the easiest to the hardest problem.
- Keep the points distribution in mind when deciding how much time to spend on each problem.

Q1 (a) [2 points]. Sam gives the runtime for an algorithm using function $f(x)$. Prove, for what values of n_{0} and constant $c, f(x)$ is $O\left(n^{3}\right)$.

$$
\begin{aligned}
& f(n)=2 x^{3}+5 x^{2}+12 \\
& 2 n^{3}+5 n^{2}+12 \leqslant c n^{3} \\
& 12 \leqslant c n^{3}-2 n^{3}-5 n^{2} \\
& 12 \leqslant(c-2) n^{3}-5 n^{2} \\
& \text { set } n=1 \\
& \quad c=20 \\
& 12 \leqslant(20-2) \times 1-5 \times 1 \\
& 12 \leqslant 18-5 \\
& 12 \leqslant 13 \\
& \text { so } f(x) \text { is } 0\left(n^{3}\right) \text { for } c=20, n_{0}=1
\end{aligned}
$$

Q1 (b) [2 points]. Give the worst-case running time $T(n)$ of the function Adder and provide the Big-Oh notation.

```
public int Adder1(int [][] A) { | | operatim
```


for $(i=0 ; i<n ; i++)\{$
for $\left(j=i ; j<n ; j^{++}\right)\{$
4
\}
connected loop, you may we senes $\frac{n(n+1)}{2}$ here in not using series.

\}
return sum $1 \longrightarrow n \times(2 n+1)=2 n^{2}+n$
\}
connected loop, you may we senes $\frac{n(n+1)}{2}$

$$
T(n)=1+1+(2 n+1)+\left(2 n^{2}+n\right)+3 n^{2}+1
$$

$$
T(n)=5 n^{2}+3 n+4
$$

$O\left(n^{2}\right)$ - Quadratic, rintiva.

* Please check with your instrveher if your method for this estimation is diffract.

Q1 (c) [2 points]. Describe the worst-case running time $T(n)$ of the function Adder 2 and provide the Big-Oh notation. Show/draw the recursion trace as necessary for this call:

$$
\begin{aligned}
& \text { Adder2(new int }[]\{1,2,3,4,5\}, 0) \text {; } \\
& \begin{array}{c}
\text { public int Adder }(\text { int }[] B, \text { int } x)\{ \\
\text { if }(x==B .1 e n g t h) \\
\text { return } 0 \text {; } \\
\text { else } \\
\text { return } B[x]+\text { Adder } 2(B,++x) ;-3 \text { peon } \\
\} \\
T(n)= \\
=
\end{array} \\
& =4 n+C
\end{aligned}
$$

$O(n)$ - Linear intine

Q2 [3 points]. Write a method public Node getSecondToLast(SList L) that takes a Singly Linked List as a parameter. This method returns a reference to the node before the last-node in the list.
public Node get Second Tolast (Slist L) $\}$

$$
\begin{aligned}
& \text { Node temp }=\text { L. head; } \\
& \text { if }(\text { ter }==\text { null) return null } \\
& \text { if (tap. next }=\text { null) return null } \\
& \text { while (tap. next. next }=\text { null) }\{ \\
& \text { tap }=\text { terp.next }
\end{aligned}
$$

$$
\}
$$

\}
return tap;

Q3 [3 points] Write a method public int getMinElemStack(Stack S) that takes an integer stack as a parameter. This method should return the minimum value in the stack S.

Hint: You may use additional data structures) to ensure that the order of items in \mathbf{S} is not changed.

$$
\text { public int getMinElemstack(stackS) \} }
$$

Stack $T=$ new stock () // assunly of type int. int $\min =S \cdot \operatorname{top}()$;

$$
\text { int } N=\text { S. size }()
$$

$$
\text { for }(\text { int } i=0 ; \quad i<N-1 ; i+T)\}
$$

Trpush (s .popes)

$$
\text { if }(s . t o \rho()<\min)\}
$$

$$
\} \quad \min =s \cdot \operatorname{top}()
$$

\}
fr e (int $i=0 ; i<N ; i++) \xi$
S.posh(Topop(1)

$$
3
$$

return min

Q4 [3 points] Assume an empty Queue Q of type int, is provided. Show/illustrate/Draw the contents of Q and provide the output (as needed) after each of these operations:

