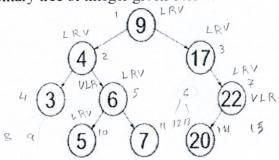

M2 Solution

Question 1


√/4 marks]

Part a: [1 point] Give the **expression** corresponding to the binary tree given on the right. in order

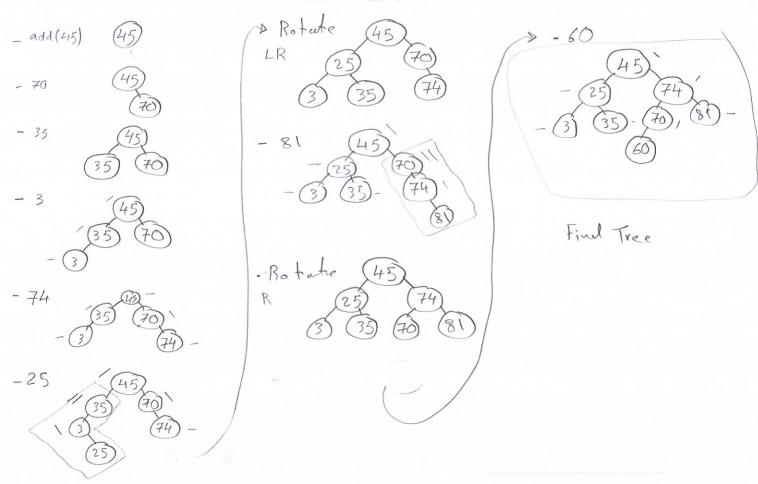
2*[3+(6/2)]/4

Part b: [2 points] Consider the binary tree of integer given below:

• [1.00] Give the array representation of the tree.

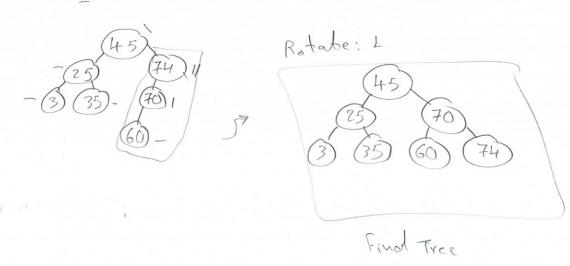
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
X	9	4	17	3	6		22			5	7			20					

- [0.25] what node is visited in post order traversal after node 6? _______
- [0.25] what node is visited in post order traversal after node 22?
- [0.25] what node is visited in pre order traversal after node 6? _____5


Part c: [1 point] Give the Big Oh run-time for the following operations (0.25 pts for each):

- Inserting an element in a BST: O(n)
- Removing an element from a AVL tree () (leg n)
- Pre-order traversal for all elements in a BST: O(N)
- Removing an element from an empty Binary Tree: ____O(1)_____

Question 2-1 $\frac{3}{3}$ marks

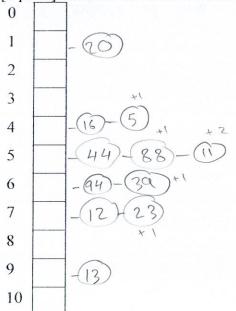

Part a: [2 points]

Create an AVL tree by inserting the following values: Re-draw the tree balancing after each insertion and identify each rotation (if necessary): 45, 70, 35, 3, 74, 25, 81, 60

Part b: [1 point] From the resulting tree, remove node 81. Which deletion case applies, re-draw the AVL tree and identify appropriate rotations (if necessary).

Case 9: No children

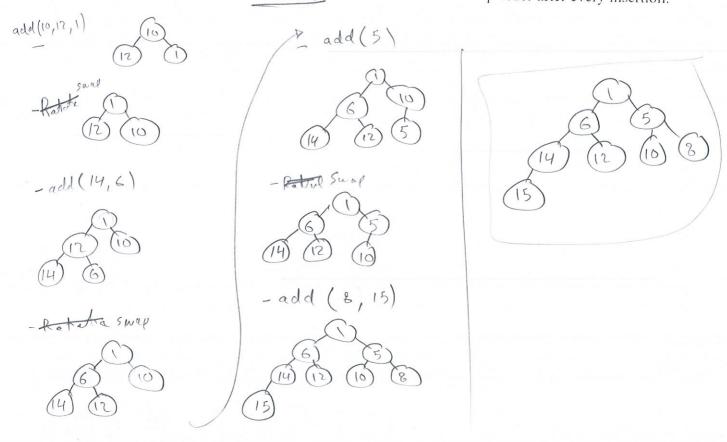
Question 3 | 4 /4 marks]

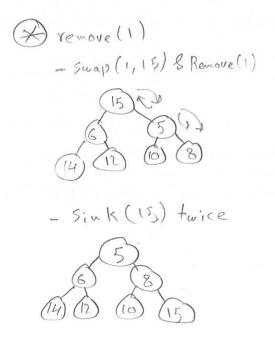

Consider a hash table of size 11 with hash function $h(i) = (2i+5) \mod 11$. Show the table that results after inserting, in the given order, the following values: 12, 44, 13, 88, 23, 94, 11, 39, 20, 16 and 5. Assume that collisions are handled using Linear Probing and then separate chaining.

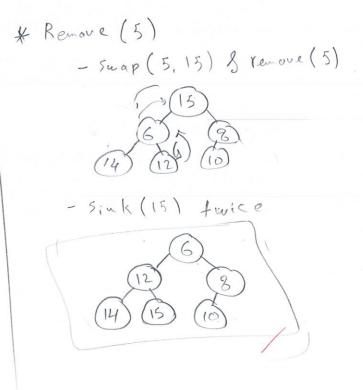
[1 point] Hash table with linear probing. Show all displacements.

[1 pc	oint] Hash ta	able with li	near probing
0	11	+6	
1	39	+6	
2	20	+ 1	
3	5	410	
4	16	0	
5	44	0	
6	88	+1	
7	12	0	
8	23	+1	
9	13	٥	
10	94	+4	

[1 point]	Compute Hash codes:
k	h(i)
12	7
44	5
13	9
88	5
23	7
94	7 6
11	5
39	6
20	
16	4
5	4


[1 point] Draw the Hash table with separate chaining


[1 point] How many collisions/displacements are observed for each method?


6 disp. for seperate change 29 disp. for linear probing Question 4 – [/4 marks]

Part a [2 points]: Given the following sequence of elements stored in an array, S = [10, 12, 1, 14, 6, 5, 8, 15]Insert the elements of the array S in a min-heap. Ensure to restore the heap order after every insertion.

Part b [2 points]: From the resulting tree (heap), remove **two** values. Show all sink/swim (heap up and heap down) operations.

