Time allowed: $\mathbf{4 0}$ minutes

Student Name:

Student ID:

Circle your instructor's name

Dr. Basit Qureshi	Dr. Syed Umar Amin	Dr. Skandar Turki

Instructions:

- This exam contains three questions with multiple parts. Closed Book, Closed Notes.
- Use of Calculators and / or computing devices / smartphones etc is strictly prohibited.
- Answer the problems on the exam sheets only. No additional attachments would be accepted.
- When the "time is over" is called, it is students' responsibility to submit his exam to the invigilator. Submitting completed exam 3 minutes after the "time is over" will incur a penalty of $\mathbf{5}$ points.

Question 1 [

Part a: [4 points] For each function $f(n)$ below, give an asymptotic upper bound using "big-Oh" notation.
(a) $f(n)=100 n^{3}-7 n^{3}+14 n^{2}$
(b) $f(n)=100 n^{3}-100 n^{3}+7 n^{2}$
(c) $\mathrm{f}(\mathrm{n})=\log \left(7 \mathrm{n}^{2}\right)$
(d) $\mathrm{f}(\mathrm{n})=5 \log \log \mathrm{n}+4 \log ^{2}(\mathrm{n})$ \qquad
(e) $\mathrm{f}(\mathrm{n})=.001 \mathrm{n}+100 \cdot 2^{\mathrm{n}}$
(f) $f(n)=n^{3}\left(1+6 n+2014 n^{2}\right)$ \qquad
(g) $f(n)=(\log n)\left(n+n^{2}\right)$ \qquad
(h) $f(n)=n^{2} \log n+2^{n}$

Part b: [1 point] We have two algorithms that solve a certain problem:
Algorithm A takes $\mathrm{T}_{\mathrm{A}}(\mathrm{n})=\mathrm{n}^{3}+5 \mathrm{n}^{2}+100 \mathrm{n}$
Algorithm B takes $T_{B}(n)=1000 \mathrm{n}^{2}+1000 \mathrm{n}$
When is algorithm B more efficient than algorithm A? Give the values of n_{0} and constant c.

Part c: [4 points] Estimate the run time as $\mathrm{T}(\mathrm{n})$ and then state the runtime requirements in big-O for each of the following code fragments. Draw recursion trace (tree) if applicable.

Code Fragment	T(n)
```void f1(int n) { for(int i=0; i < n; i++) { for(int j=0; j < 10; j++) { for(int k=0; k < n; k++) { for(int m=0; m < 10; m++) { System.out.println("!"); } } } }```	



Question 2 [3 points]: Assume a Circular Linked List C is given that stores only an integer "val" and the "next" pointer in a node. Write a remove method in java within the circular linked list class that searches for a value and removes it from the list.
public void problem2 (int value) \{

Question 3 [3 points]: Write a method in java to merge two sorted singly linked lists A and B containing integers, as shown in the figure. Your method returns a new sorted list C .

public SinglyLinkedList problem2 (SinglyLinkedList A, SinglyLinkedList B) \{

