Major Exam 1 Term 241

Course title: Data Structures and Algorit	Course Code : CS 210		
Exam date: 30/09/2024	Exam Time: 50 minutes		
Student Name: Student ID:			
Circle Instructor Name:	Dr. Sved Um	ar Amin	Dr. Basit Oureshi
	J J		
Circle Section Time:	9AM	10AM	11AM

Question Number	CLO	Question points	Score
Question 1	CLO 1	6	
Question 2	CLO 3	6	
Question 3	CLO 4	3	
Total out of		15	

Instructions:

- This exam contains three questions with multiple parts.
- Time allowed: 50 minutes
- Closed Book, Closed Notes.
- Use of Calculators and / or computing devices / smartphones etc is strictly prohibited.
- Answer the problems on the exam sheets only. No additional attachments would be accepted.
- If you need extra space use the back of a page.
- When the "time is over" is called, it is students' responsibility to submit his exam to the invigilator. Submitting completed exam 3 minutes after the "time is over" will incur a penalty of <u>5 points</u>.
- Do **NOT** use the erasable pens

Few gentle reminders:

- If you get stuck on some problem for a long time, move on to the next one.
- The ordering of the problems is somewhat related to their relative difficulty. However, the order might be different for you!
- You should be better off by first reading all questions and answering them in the order of what you think is the easiest to the hardest problem.
- Keep the points distribution in mind when deciding how much time to spend on each problem.

ſ

Question 1

6 points - CLO 1]

Part A:

(4 / points)

Observe the following diagram that illustrates an ordered circular linked list with 6 nodes. Each node stores a next, previous pointer and an integer key.

(+-		+	+-		-+	+		-+	+-		+	+		-+	+		-+
\sim	prev	<		prev	<		prev	<	1	prev	<	1	prev	<		prev	1
1	3	1	1	5	1	1	7	1	I	9	I	1	11	1	1	1	1
	next		->1	next		>I	next		->1	next		>	next		>I	next	\Box
(+-		+	+-		-+	+		-+	+-		+	+-		-+	+		-+ /
\sim	^																
	I I																
C	Cursor	:															

For	For Question 1, print your answers in this area only. DO NOT write answers anywhere else							
				(it will not be graded).				
1	A	B (\bigcirc \bigcirc					
2	A	B (-				
3	A	B (-				
4	A	B (-				
5	A	B (-				
6	A	B (- _				

Answer the following MCQs

1. Which of the following code snippets successfully inserts a node containing key = 4, after the					
cursor?					
A)	B)				
Node N = new Node();	Node N = new Node();				
N.key = 4;	N.key = 4;				
N.prev = Cursor;	N.prev = Cursor;				
N.next = Cursor.prev;	N.next = Cursor.next;				
Cursor.next = Cursor;	N.next = Cursor;				
Cursor.prev = N;	N.prev = Cursor.prev;				
C)	D)				
Node N = new Node();	Node N = new Node();				
N.key = 4;	N.key = 4;				
N.prev = Cursor;	N.prev = Cursor;				
N.next = Cursor.next;	N.next = Cursor.next;				
Cursor.next = N;	Cursor.next = N;				
N.next.prev = N;	Cursor.prev = N;				

2. Which of the following code snippets successfully removes the node containing key = 1?					
A)	В)				
Cursor.prev = Cursor.prev.prev;	Cursor = Cursor.prev;				
Cursor.prev.next = Cursor;	Cursor.next = Cursor.next.next;				
C)	D)				
Cursor.prev = Cursor.next;	Cursor = Cursor.next;				
Cursor.next = Cursor.prev;	Cursor.prev = Cursor.prev.next;				

3. Which of the following code snippet searches a	and returns a node containing key 11?
A)	В)
<pre>while(Cursor!=null) {</pre>	<pre>while(Cursor.next!=null) {</pre>
if(Cursor.key == 11)	if(Cursor.key == 11)
return Cursor;	return Cursor;
Cursor = Cursor.next;	Cursor = Cursor.next;
}	}
C)	D)
<pre>for(int i=0;i<=size;i++)){</pre>	<pre>for(int i=0;i<size;i++)){< pre=""></size;i++)){<></pre>
if(Cursor.next == 11)	if(Cursor.key == 11)
return Cursor;	return Cursor;
Cursor = Cursor.next;	Cursor = Cursor.next;
}	}
4. Assume that this list is empty. Which of the fo	llowing inserts a new node containing 10 as key?
A)	В)
Cursor = new Node();	Cursor = new Node();
Cursor.next = null;	Cursor.next = Cursor;
Cursor.prev = null;	Cursor.prev = Cursor;
Cursor.key = 10;	Cursor.key = 10;
C)	D)
Cursor = new Node();	Cursor = new Node();
Cursor.next = Cursor;	Cursor.next = null;
Cursor.prev = null;	Cursor.prev = Cursor;
Cursor.key = 10;	Cursor.key = 10;

Part B:

(2 / points)

The following Implements a method **insertInorder** in the class Circular DoublyLinkedList that accepts an integer X as an argument. This method will create a new node with the key X and insert it into the list in the appropriate position to maintain the list's order.

```
1
    class CircularDoublyLinkedList {
 2
        class Node {
 3
           int key;
 4
            Node prev, next;
 5
 6
            public Node(int key) {
 7
               this.key = key;
 8
                this.prev = this.next = null;
 9
            }
10
        }
        public void insertInOrder(int X) {
11
12
            Node N = new Node(X);
13
            Node Start = Cursor;
            do {
14
                if (_
15
                                ____) {
                    N.next = Cursor.next;
16
17
                    N.prev = Cursor;
18
                    Cursor.next.prev = N;
19
                    Cursor.next = N;
20
                    return;
21
                }
22
                Cursor = Cursor.next;
23
            } while (_____);
24
25
        //other methods for remove/inserts/search etc.
```

5. What is an appropriate statement for the if condition on line 15?						
A)	В)					
Cursor.key <= X && X < Cursor.prev.key	Cursor.key <= X && X < Cursor.next.key					
C)	D)					
Cursor.key <= X	Cursor.next.key >= X					

6. What is an appropriate statement for the while loop condition on line 23?					
A)	В)				
Cursor != null	Cursor.key <= X				
C)	D)				
Cursor != Start	Cursor!=Cursor				

Question 2

[6 points - CLO 3] 3 / points)

(

Part A:

•

Give the best Big-O characterization for each of the following running time estimates (where n is the size of the input problem). Then, order them by giving 1 to the fastest running time and 4 to the slowest running time in terms of their asymptotic growth rate. Assume $n \ge 1$.

(Note: Two methods can have the same growth rate.)

Function \ Method	Big-O	Order
	notation	
$6 \operatorname{nlog}_2 n$		
$n^3 \log_2 n$		
$2^{\log_2 n}$		
<pre>public int fun1(int n) {</pre>		
<pre>int diff = 0;</pre>		
for (int i = 0; i < n; ++i) {		
for (int j = 0; j < n*n; ++j) {		
diff += Math.abs(i-j);		
}		
}		
return alli;		
$\frac{1}{15000}$ n + 178 logn - 88 n ²		
<pre>public int fun2(int n) {</pre>		
int $k = 50;$		
int sum = 0;		
for (i = 1; i <= k*k; i++) {		
for (j = 1; j <= n; j++) {		
sum = sum + i + j;		
}		
}		
}		

Part B: (3 / points)

For the following questions pick the worst-case running time in each case from these choices: **(Note:** one alternative may be used for more than one question)

A. O(1) B. O(n)	C. O(n log n)	D. O(n^2)	E. O(n^3)				
1	The time complexity t							
2	The time complexity t	o remove the last element	in a singly linked lis	t.				
3	The time complexity to remove the element before the cursor in a circular linked list.							
4	Searching for a smallest number in an ordered array of integers.							
5	Searching for the max	imum element in an order	ed doubly linked list					
6	Searching for the min	mum element in an array.						

Question 3 Part A:

[3 points - CLO 3] (1 / points)

Algorithms A and B spend exactly $T_A(n) = 7n^2 + 3n\log_2 n$ and $T_B(n) = n^3$, respectively, for a problem of size n. Find the values of c and n_0 where algorithm A is better than algorithm B.

Part B:

2 / points)

(

The function f is defined for non-negative integers a and b recursively as follows:

public void f (int a, int b)
{
 if (a==0 || b==0)
 return 0;
 if (a==b)
 return
$$f(a - 1, b - 1) + 2a - 1$$
;
 if (a > b)
 return $f(a - b, b) + f(b, b)$;
 if (a < b)
 return $f(a, a) + f(b - a, a)$;
 }

Compute f(4, 3) by drawing a recursion tree showing all of the computation required and then use your tree to compute the answer.