ANALYSIS OF ALGORITHMS

CS210 - Data Structures and Algorithms

Dr. Basit Qureshi $\left.\begin{array}{c}\text { ibhu hill anol } \\ \text { PRINESNUTAN } \\ \text { UNIVENSITY }\end{array}\right)$

TOPICS

- Running Time
- Experimental Studies \& challenges
- Why Algorithm Analysis?
- Estimating Runtime
- Growth functions and Asymptotic Analysis
- Comparing Algorithms
- Big Oh notation
- Analysis of Recursive Algorithms

Output

RUNNING TIME

- How to time a program?

- Babbage Analytical Engine
" As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise-By what course of calculation can these results be arrived at by the machine in the shortest time?" - Charles Babbage (1864)

RUNNING TIME

- How to time a program?
- Use stopwatch!
\% java ThreeSun 1Kints.txt

70
\% java ThreeSun 2Kints.txt

528
\% java ThreeSun 4Kints.txt

\square

 M,

 metas

 Nok monk

 Me tiot

RUNNING TIME

- How to time a program?
- Use Code?

```
public class Stopwatch
{
    private final long start = System.currentTimeMillis();
    public double elapsedTime()
    {
        long now = System.currentTimeMillis();
        return (now - start) / 1000.0;
    }
}
```


RUNNING TIME

- Comparing time

```
public static String repeat1(char c, int n) {
    String answer = "";
    for (int j=0; j < n; j++)
        answer += c;
    return answer;
}
public static String repeat2(char c, int n) {
    StringBuilder sb = new StringBuilder();
    for (int j=0; j < n; j++)
        sb.append(c);
    return sb.toString( );
}
```


RUNNING TIME

- Comparing time

n	repeat1 (in ms)	repeat2 (in ms)
50,000	2,884	1
100,000	7,437	1
200,000	39,158	2
400,000	170,173	3
800,000	690,836	7
$1,600,000$	$2,874,968$	13
$3,200,000$	$12,809,631$	28
$6,400,000$	$59,594,275$	58
$12,800,000$	$265,696,421$	135

EXPERIMENTAL STUDIES \& CHALLENGES

- Experimental study: How to?
- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed
- Plot the results

EXPERIMENTAL STUDIES \& CHALLENGES

- Experimental study Challenges
- Experimental running times of two algorithms are difficult to directly compare unless the experiments are performed in the same hardware and software environments.
- Experiments can be done only on a limited set of test inputs; hence, they leave out the running times of inputs not included in the experiment (and these inputs may be important).
- An algorithm must be fully implemented in order to execute it to study its running time experimentally.

WHY ALGORITHM ANALYSIS

- Algorithm Analysis
- Allows us to evaluate the relative efficiency of any two algorithms in a way that is independent of the hardware and software environment.
- Is performed by studying a high-level description of the algorithm without need for implementation.
- Takes into account all possible inputs.

WHY ALGORITHM ANALYSIS

- Understanding Runtimes
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
- Easier to analyze
- Crucial to applications such as games, finance and robotics

WHY ALGORITHM ANALYSIS

- Estimating Run-time
- Estimate the primitive operations: "Basic computations performed by an algorithm"
- Identifiable in pseudocode
- Largely independent from the programming language
- Assumed to take a constant amount of time in the RAM model
- Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

WHY ALGORITHM ANALYSIS

Observation. Most primitive operations take constant time

operation	example	nanoseconds t
integer add	$a+b$	2.1
integer multiply	$a^{*} b$	2.4
integer divide	a / b	5.4
floating-point add floating-point multiply floating-point divide	$a^{*}+b$	4.6
sine b	Math. b eta)	4.2
arctangent	Math.atan2 (y, x) \ldots	13.5
\ldots	129.3	

operation	example	nanosecond $\mathbf{s} \boldsymbol{t}$
variable declaration	int \mathbf{a}	c_{1}
assignment statement integer compare	$\mathbf{a}=\mathbf{b}$	c_{2}
array element access	$\mathbf{a}[\mathrm{i}]$	c_{3}
array length 1D array allocation 2D array allocation new int[$[\mathrm{N}]$$c_{4}$		

[^0]
WHY ALGORITHM ANALYSIS

- Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
/** Returns the maximum value of a nonem\betaReratilg\ of numbers. */
public static double arrayMax(double[ ] data) {
int \(\mathrm{n}=\) data.length;
double currentMax \(=\operatorname{data}[0]\);
    for(int j=1; j < n; j++)
            if (data[j] > currentMax)
                currentMax = data[j];
    return currentMax;
\[
\text { Best case: } 4 n+7 \text { operations } \quad \text { Worst case: } 6 n+7 \text { operations }
\]
```

$$
4 n+7<=T(n)<=6 n+7 \text { operations }
$$

WHY ALGORITHM ANALYSIS

Estimating Running Time

Algorithm arrayMax executes $5 n+5$ primitive operations in the worst case, $4 n+5$ in the best case. Define:

Let $\boldsymbol{a}=$ Time taken by the fastest primitive operation
Let $\boldsymbol{b}=$ Time taken by the slowest primitive operation
Let $T(n)$ be worst-case time of arrayMax.
Then

$$
a(4 n+5) \leq T(n) \leq b(5 n+5)
$$

Hence, the running time $T(n)$ is bounded by two linear functions

GROWTH RATE OF RUNNING TIME

Growth rate.
Changing the hardware/ software environment affects $\mathrm{T}(\mathrm{n})$ by a constant factor, but
"Does not alter the growth rate of T(n)"

We consider Se

- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx \mathrm{n}$
- N-Log- $N \approx n \log n$
$g(n)=\lg n$
- Quadratic $\approx \mathrm{n}^{2}$
- Cubic $\approx \mathrm{n}^{3}$
- Exponential $\approx 2^{n} \quad g(n)=1$

$$
g(n)=n^{3}
$$

$$
g(n)=2^{n}
$$

GROWTH RATE OF RUNNING TIME

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	$T(2 N) / \mathrm{T}(N)$
1	constant	$\mathrm{a}=\mathrm{b}+\mathrm{c} ;$	statement	add two numbers	1
$\log N$	logarithmic	$\left.\begin{array}{c} \text { while }(N>1) \\ N=N / 2 ; \ldots \end{array}\right\}$	divide in half	binary search	~ 1
N	linear	$\left.\begin{array}{c} \text { for }(\text { int } i=0 ; i<N ; i++) \\ \{\ldots \end{array}\right\}$	Ioop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N^{2}	quadratic	$\left.\begin{array}{l} \text { for (int } i=0 ; i<N ; i++) \\ \qquad \text { for }\left(\text { int } i=0 ; i<N ; i^{++}\right) \\ \{\ldots \end{array}\right\}$	double loop	check all pairs	4
N^{3}	cubic	$\left.\begin{array}{l} \text { for (int } i=0 ; i<N ; i++) \\ \text { for }(\text { int } i=0 ; i<N ; i++) \\ \text { for }(\text { int } k=0 ; k<N ; k++) \\ \{\ldots \end{array}\right\}$	triple loop	check all triples	8
2^{N}	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	$T(N)$

GROWTH RATE OF RUNNING TIME

Growth rate time-perception

growth rate	time to process millions of inputs			
	1970s	1980s	1990s	2000s
$\mathbf{1}$	instant	instant	iinstant	instant
log N	instant	instant	instant	instant
\mathbf{N}	minutes	seconds	second	instant
$\mathbf{N} \log \mathbf{N}$	hour	minutes	tens of seconds	seconds
\mathbf{N}^{2}	decades	years	months	weeks
\mathbf{N}^{3}	never	never	never	millennia

COMPARISON OF ALGORITHMS

Comparing two algorithms

We give the runtime for two popular sorting algorithms as:

- insertion sort is $\mathrm{n}^{2} / 4$
- merge sort is $2 \mathrm{n} \lg \mathrm{n}$

For a large dataset (1 million items), how long would it take to sort the data

- insertion sort takes roughly 70 hours
- merge sort takes roughly 40 seconds For a faster machine it could be 40 minutes versus less than 0.5 seconds
insertion sort vs merge sort

COMPARISON OF ALGORITHMS

Affect of constant factors

The growth rate is not affected by constant factors or
lower-order terms
Examples
$10^{2} \mathrm{n}+10^{5}$ is a linear function $10^{5} n^{2}+10^{8} n$ is a quadratic function

BIG-OH NOTATION

The Big Oh notation

Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants \boldsymbol{c} and \boldsymbol{n}_{0} such that

$$
f(n) \leq c g(n) \text { for } n \geq n 0
$$

Example: Prove that $2 n+10$ is $O(n)$

$$
\begin{aligned}
& 2 n+10 \leq c n \\
& (c-2) n \geq 10 \\
& n \geq 10 /(c-2)
\end{aligned}
$$

BIG-OH NOTATION

The Big Oh notation example
Example: Prove that $\boldsymbol{n}^{\mathbf{2}}$ is not $O(n)$
$n^{2} \leq c n$
$n \leq c$
The above inequality cannot be satisfied since c must be a constant

BIG-OH NOTATION

The Big Oh notation example
Example: Prove that $7 n-2$ is $O(n)$
$7 n-2 \leq n$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that for $\mathrm{n} \geq$
n_{0}
this is true for $\mathrm{c}=7$ and $\mathrm{nO}=1$

BIG-OH NOTATION

The Big Oh notation example
Example: Prove that $3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
$3 n^{3}+20 n^{2}+5 \leq c n^{3}$ for $n \geq n_{0}$ need $\mathrm{c}>0$ and $\mathrm{nO} \geq 1$ such that this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$

BIG-OH NOTATION

The Big Oh notation example
Example: Prove that $3 \log n+5$ is $O(\log n)$
$3 \log n+5 \leq c \log n$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that for $\mathrm{n} \geq \mathrm{n}_{0}$
this is true for $\mathrm{c}=8$ and $\mathrm{n}_{0}=2$

BIG-OH NOTATION

Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the growth rate of a function The statement " $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))^{\prime \prime}$ means that the growth rate of $\mathrm{f}(\mathrm{n})$ is no more than the growth rate of $\mathrm{g}(\mathrm{n})$
We can use the big-Oh notation to rank functions according to their growth rate

	$f(n)$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(f(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$\boldsymbol{f (n)}$ grows more	No	Yes
Same growth	Yes	Yes

BIG-OH NOTATION

Big-Oh rules

If is $f(n)$ a polynomial of degree d, then $f(n)$ is $O\left(n^{d}\right)$, i.e.,

- Drop lower-order terms
- Drop constant factors

Use the smallest possible class of functions Say " $2 n$ is $O(n)$ " instead of " $2 n$ is $O\left(n^{2}\right)$ "

Use the simplest expression of the class
Say " $3 n+5$ is $O(n)$ " instead of " $3 n+5$ is $O(3 n)$ "

ASYMPTOTIC ALGORITHM ANALYSIS

- Asymptotic Analysis
- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- Example:
- We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped any how, we can disregard them when counting primitive operations

ASYMPTOTIC ALGORITHM ANALYSIS

- Asymptotic Analysis - Example
- Computing Prefix Averages: The i-th prefix average of an array X is average of the first $(i+1)$ elements of X :
- $A[i]=(X[0]+X[1]+\ldots+X[i]) /(i+1)$

```
/** Returns an array a such that, for all j, a[j] equals the average of x[0], .., x[j]. */
public static double[ ] prefixAverage1(double[ ] x) {
    int n = x.length;
    double[] ] a = new double[n];
    for (int j=0; j < n; j++) {
        double total = 0;
        for (int i=0; i <= j; i++)
            total +=x[i];
        a[j] = total / (j+1);
    }
    return a;
}
// filled with zeros by default
```

// filled with zeros by default
// begin computing $\times[0]+\ldots+x[j]$
// record the average

ASYMPTOTIC ALGORITHM ANALYSIS

- Asymptotic Analysis - Example
- The running time of prefixAverage 1 is $\mathrm{O}(1+2+\ldots+n)$
- The sum of the first n integers is $n(n+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm prefixAverage1 runs in $\mathbf{O}\left(n^{2}\right)$ time

ASYMPTOTIC ALGORITHM ANALYSIS

- Asymptotic Analysis - Example 2
- Here is prefixAverage2 running in $\mathbf{O}(n)$ time

```
/** Returns an array a such that, for all j, a[j] equals the average of x[0], .., x[j]. */
public static double[ ] prefixAverage2(double[ ] x) {
    int n = x.length;
    double[ ] a = new double[n];
    double total = 0;
    for (int j=0; j < n; j++) {
        total +=x[j];
        a[j] = total / (j+1);
    }
    return a;
}
```


RELATIVES OF BIG OH

- Relatives of Big Oh
- big-Omega
- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n} 0 \geq 1$ such that

$$
f(n) \geq c g(n) \text { for } n \geq n 0
$$

- big-Theta
- $\mathrm{f}(\mathrm{n})$ is $\Theta(\mathrm{g}(\mathrm{n}))$ if there are constants $\mathrm{c}^{\prime}>0$ and $\mathrm{c}^{\prime \prime}>0$ and an integer constant $\mathrm{n} 0 \geq 1$ such that

$$
c^{\prime} g(n) \leq f(n) \leq c^{\prime \prime} g(n) \text { for } n \geq n 0
$$

RELATIVES OF BIG OH

- Relatives of Big Oh
- big-Oh
$f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
- big-Omega
$f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$
- big-Theta
$f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$

Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability
- Properties of powers:
$a^{(b+c)}=a^{b} a^{c}$

$$
a b c=(a b)^{c}
$$

$\mathrm{ab}^{\mathrm{b}} / \mathrm{ac}=\mathrm{a}^{(\mathrm{b}-\mathrm{c})}$
$b=a \log _{a} b$
$b^{c}=a c^{*} \log _{a} b$

- Properties of logarithms:
$\log _{b}(x y)=\log _{b} x+\log _{b} y$
$\log _{b}(x / y)=\log _{b} x-\log _{b} y$
$\log _{b} x a=a \log _{b} x$
$\log _{b} a=\log _{x} a / \log _{x} b$

ANALYSIS OF RECURSIVE ALGORITHMS

© 2020 - Dr. Basit Qureshi

Here we go again

RECURSION

- Recursion: when a method calls itself
- Classic example - the factorial function:

$$
\begin{aligned}
& \mathrm{n}!=1 \cdot 2 \cdot 3 \cdot \cdots \cdot(\mathrm{n}-1) \cdot \mathrm{n} \\
& f(n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
n \cdot f(n-1) & \text { else }
\end{array}\right.
\end{aligned}
$$

RECURSION

- Building a recursion tree:

- A box for each recursive call
- An arrow from each caller to callee
- An arrow from each callee to caller showing return value cal return $4^{*} 6=24 \longrightarrow$ final answer

RECURSION

- Runtime as Big Oh

- A box for each recursive call
- An arrow from each caller to callee
- An arrow from each callee to caller showing return value cal return $4^{*} 6=24 \longrightarrow$ final answer

```
public static int factorial(int n) {
    if(n == 0)
        return 1;
    else
    return n * factorial (n - 1);
6: }
```

Looking at the recursion tree, we can determine

- factorial call is made for values $4,3,2,1$ and 0 ;
- 0 being the base case, there are 4 recursive calls when $n=4$.
- for larger n, there would be n calls.

- So the runtime for factorial can be given as $\mathbf{O}(\mathrm{n})$.

RECURSION

- Estimating the number of operations:

- Base call occurs only once
- Recursive calls are made repeatedly
- Recursion tree can help determine the order of growth.

```
1op 1: public static int factorial(int n) {
1op 2: if(n == 0)
1op 3: return 1;
    else
                return n * factorial(n - 1);
        }
```


- Total recursive operations = 6 ; base-case operations is 1 .
- So $T(n)=6 n+c$
- where c is a constant time (includes base case + cost of recursion)

RECURSION

- Examples: Computing Powers

$$
p(x, n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
x \cdot p(x, n-1) & \text { else }
\end{array}\right.
$$

```
public static int Power(int x, int n) {
    if(n == 0)
        return 1;
    else
        return x * Power(x, n - 1);
    6: }
```

So what is the runtime for Power $(2,4)$? O(n)

RECURSION

- Examples: Reversing an array
: public static void reverse(int [] A, int i, int j) \{
2: if(i >= j)
3: return;
4: else \{
5: int temp $=\mathrm{A}[\mathrm{i}]$;
6: $A[i]=A[j]$;
7: A[j] = temp;
9: \}
8: return reverse(A, i+1, j-1);

So what is the runtime for reverse $(A, 0,7)$?
$\mathrm{O}(\mathrm{n} / 2)$
If $\mathrm{n}=\mathbf{7}$; then $\mathrm{n} / \mathbf{2}$ calls were made to reach the middle of the array.

RECURSION

- Examples: Binary Search: Search for an integer in an ordered list
- We consider three cases:
- If the target equals data[mid], then we have found the target.
- If target < data[mid], then we recur on the first half of the sequence.
- If target > data[mid], then we recur on the second half of the sequence.

RECURSION

- Examples: Binary Search

```
public static boolean Bsearch(int [] A, int X, int lo, int hi){
    if(lo >= hi)
        return false;
    else {
        int mid = (lo+hi)/2;
        if (X == A[mid])
        return true;
        else if (X < A[mid])
                return Bsearch(A, X, lo, mid-1);
        else
                return Bsearch(A, X, mid+1, hi);
    }
```

13: \}

Each recursive call divides the search region in half; hence, there can be at most log \boldsymbol{n} levels
So runtime is $\mathrm{O}(\log \mathrm{n})$

RECURSION

- Examples: Fibonacci numbers
- Fibonacci numbers are defined recursively:

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{i}=F_{i-1}+F_{i-2} \quad \text { for } i>1 .
\end{aligned}
$$

```
public static int Fibonacci(int k) \{
    if ( \(k==0\) )
        return 0;
    else if ( \(k==1\) )
        return 1;
    else
        return Fibonacci(k-1) + Fibonacci(k-2);
    \}
```


RECURSION

- Examples: Fibonacci numbers

- Let n_{k} be the number of recursive calls by BinaryFib(k)
- $n_{0}=1$
- $n_{1}=1$
- $n_{2}=n_{1}+n_{0}+1=1+1+1=3$
- $n_{3}=n_{2}+n_{1}+1=3+1+1=5$
- $n_{4}=n_{3}+n_{2}+1=5+3+1=9$
- $n_{5}=n_{4}+n_{3}+1=9+5+1=15$
- $n_{6}=n_{5}+n_{4}+1=15+9+1=25$
- $n_{7}=n_{6}+n_{5}+1=25+15+1=41$
- $n_{8}=n_{7}+n_{6}+1=41+25+1=67$.
- Note that n_{k} at least doubles every other time
- That is, $n_{k}>2^{k / 2}$. It is exponential. $\mathbf{O}\left(\mathbf{2}^{\mathrm{n}}\right)$

NOTE

Materials for this set of slides were extracted from

- Goodrich, Tamassia, Goldwasser ,"Analysis of Algorithms", 6th edition, Wiley, 2014
- Robert Sedgewick and Kevin Wayne, "Algorithms", 4th edition, Addison Wesley, 2011.

[^0]: † Running OS X on Macbook Pro 2.2GHz with 2GB RAM

