\

ANALYSIS OF ALGORITHMS

CS210 — Data Structures and Algorithms

Ualw ol dacola

Dr. Basit Qureshi PrINCE SULTAN

&

https://www.drbasit.org/

https://www.drbasit.org/

%7

TOPICS

* Running Time

* Experimental Studies & challenges
* Why Algorithm Analysis?

* Estimating Runtime

e Growth functions and Asymptotic Analysis
* Comparing Algorithms
* Big Oh notation

* Analysis of Recursive Algorithms

© 2020 - Dr. Basit Qureshi

Input

= €

Algorithm

Output

O
N

- RUNNING TIME

* How to time a program?
* Babbage Analytical Engine

“As soon as an Analytic Engine exists, it will necessarily guide
the future course of the science. Whenever any result is sought
by its aid, the question will arise—By what course of
calculation can these results be arrived at by the machine in the
§ shortest time? ° — Charles Babbage (1864)

© 2020 - Dr. Basit Qureshi

bl 8 |

i

-
it

E. '_'
Ll K2

QUK
|

11 ?ii-.l 3 (B

—

<

N\

)

RUNNING TIME

* How to time a program?
e Use stopwatch!

"\ ©2020- Dr. Basit Qureshi

% java ThreeSun

IKints. txt

ra ™~
"' .II 1 M
[wk ek nick
\ |

70
% java ThreeSun

A".'. '\. M 1 1
{ \ H1 N RSN S 8
{ |tk txck Ak ek
\ J

P TS IS T

528
% java ThreeSun

L tck nck Ak gk nok trow ek 2y
4 ok tack Ak ek nok nnow fak 2
| 'l . 1
| AL yinadinsn ())
\ .

e ixk “t «
ik k& ki .
! .

4039

2Kints.txt

AKints . txt

Lok

ck ek nck taok fack A
k aek ok taow dack 23

korack teow fack 2xck
fek ok teow ek 2x

/

o

///’,

RUNNING TIME

* How to time a program?
e Use Code?

public class Stopwatch

{

private final long start = System.currentTimeMillis();

public double elapsedTime()
{

long now = System.currentTimeMillis();
return (now - start) / 1000.0;
¥

}

© 2020 - Dr. Basit Qureshi

- RUNNING TIME

* Comparing time

public static String repeatl(char c, int n) {
String answer = "";

for (int j=0; j < n; j++)
answer += C;
return answer;

\ }
\
\\ public static String repeat2(char c, int n) {
\\ StringBuilder sb = new StringBuilder();
%& for (int j=0; j < n; j++)
i\ } sb.append(c);
\ return sb.toString();
\ | |

}

© 2020 - Dr. Basit Qureshi

RUNNING TIME

* Comparing time

n repeatl (in ms) | repeat2 (in ms)
50,000 2,884 1 >
100,000 7437 I £
\ 200,000 39,158 2 5 —0— repeatl
§ 400,000 170,173 3 E EE——
\ 800,000 690,836 7 =
\\\\ 1,600,000 2,874,968 13 2
'\ 3,200,000 12,809,631 28
6,400,000 59,594,275 58
12,800,000 265,696,421 135

7 i
Y

I 7

© 2020 - Dr. Basit Qureshi

EXPERIMENTAL STUDIES & CHALLENGES

« Experimental study: How to?

* Write a program implementing the algorithm

* Run the program with inputs of varying size and composition, noting the

time needed
* Plot the results

© 2020 - Dr. Basit Qureshi

9000
6750 - -
[]
’UT o
g .
E o
= e
2250 - .
[]
[4
[] []
5
o a8
0 B8 : :
0 23 45 68 90

Input Size

2/

///// 4

EXPERIMENTAL STUDIES & CHALLENGES

« Experimental study Challenges

* Experimental running times of two algorithms are difficult to directly

compare unless the experiments are performed in the same hardware
and software environments.

* Experiments can be done only on a limited set of test inputs; hence, they

leave out the running times of inputs not included in the experiment (and
these inputs may be important).

* An algorithm must be fully implemented in order to execute it to study its
running time experimentally.

WHY ALGORITHM ANALYSIS
* Algorithm Analysis

* Allows us to evaluate the relative efficiency of any two algorithms in a
way that is independent of the hardware and software environment.

* |s performed by studying a high-level description of the algorithm without
need for implementation.

* Takes into account all possible inputs.

’ ////////////%/ W/

//;////;/4/

/ /////////////////

V7 4

7///%
774
),

WHY ALGORITHM ANALYSIS

« Understanding Run-

tl mes SmMS fpre==m e m e c e rr e mrrm r s mrm - —-—-—- worst-case time
* The running time of an .

o . ms .
algorithm typically grows average-case time?
with the input size. B 3ms

. . = A S S - .
* Average case time is often £ best-case time
o . o ms
difficult to determine. E
* We focus on the worst 1 ms
case running time.
 Easier to analyze A B € D E F G

]]] Input Instance
* Crucial to applications

such as games, finance
and robotics

%

WHY ALGORITHM ANALYSIS

 Estimating Run-time

e Estimate the primitive operations : "Basic computations performed by an
algorithm”

* |dentifiable in pseudocode

* Largely independent from the programming language
* Assumed to take a constant amount of time in the RAM model

* Examples:

e Evaluating an expression
Assigning a value to a variable
Indexing into an array

Calling a method

Returning from a method

w7 /////%/;/////

////////////////

Y 7

9/

i

7

WHY ALGORITHM ANALYSIS

Observation. Most primitive operations take constant time

operation

multiply

divide

sine

integer add

integer multiply
integer divide
floating-point add

floating-point

floating-point

arctangent

example
a+b

a*b
a/b

a+b

a*b

a/b

Math.sin(th

eta)

Math.atan2

(y, x)

nanoseconds T
2.1
2.4

5.4

4.6

4.2

13.5

91.3

129

operation

example

nanosecond

variable
declaration

assignment
statement

integer compare

array element
access

array length

1D array
allocation

2D array
allocation

ali]
a.length

new int[N]

new int[N][N]

s T

+ Running OS X on Macbook Pro 2.2GHz with 2GB RAM

© 2020 - Dr. Basit Qureshi

///%/;/////

0/ 7

77,

WHY ALGORITHM ANALYSIS

 Counting Primitive Operations

* By inspecting the pseudocode, we can determine the maximum number of

primitive operations executed by an algorithm, as a function of the input
Size

return currentMax;

1 /*% Returns the maximum value of a ne%BPf'éq;Wof numbers. x/

2 public static double arrayMax(doubfe[| data) {

3 int n = data.length; 2 operations; define int n; assign n a value

4 double currentMax = data[0]; 2 ops // assume first entry is biggest (for now)
5 for (int j=1; j < n; j++) 1+ n+ n// consider all other entries

6 if (data[j] > currentMax) 2*n // if datalj] is biggest thus far...

7 currentMax = datalj]; Oor2*n// record it as the current max

8

9

}

Best case: 4n + 7 operations Worst case: é6n + 7 operations
4n + 7 <= T(n) <= 6n + 7 operations

© 2020 - Dr. Basit Qureshi

%

//////,//////*//// .

g

///////// /

/,1///
////////////////

WHY ALGORITHM ANALYSIS

Estimating Running Time

Algorithm arrayMax executes 5n + 5 primitive operations in the worst case,
4n + 5 in the best case. Define:

Let a = Time taken by the fastest primitive operation
Let b = Time taken by the slowest primitive operation
Let T(n) be worst-case time of arrayMax.
Then
a(dn+5)<T(n)<b(5n+5)
Hence, the running time T(n) is bounded by two linear functions

GROWTH RATE OF RUNNING TIME

Growth rate.

Changing the hardware/ software environment affects T(n) by a constant factor,

but

We consider Seven important functions

“Does not alter the growth rate of T(n)’
| | | g(n) = |9 n

* Constant=1

e Logarithmic = log n
* Linear=n

* N-Log-N=nlogn
* Quadratic = n?

e Cubic = n? |
* Exponential = 2" g(n) =1

g(n)

g(n) = n2

n3

n

GROWTH RATE OF RUNNING TIME

Common order-of-growth classifications

order of - - .-
growth typical code framework description| example T(2N) / T(N)
1 constant a=b +c¢; statement add two 1
numbers
. . while (N > 1) divide in binary
log N logarithmic { N=N/2; ... } half search =1
§ N linear for (inti=0;i<N;i++) loop fln(_l the 5
\ { .. } maximum
\\ divide
*\§ Nlog N linearithmic [see mergesort lecture] and mergesort ~2
§ conquer
\ for (inti=0;i<N;i++)
A\ 5 : e Ao NI check all
§§ N quadratic for (intj=0; j < N; j++) double loop pairs 4
\|
\i\\\ for (inti=0;i<N;i++)
N\ ; : for (intj=0; j<N; j++) . check all
\ W cubic for (int k = 0; k < N; k++) tripleloop 4 iples §
3 (..}
2N exponential [see combinatorial search lecture] exhaustive | check all T(N)
search subsets

~ GROWTH RATE OF RUNNING TIME

Growth rate time-perception

time to process millions of inputs

| 1
§\§ log N
\ N minutes seconds second instant
A
\
\\ Nlog N hour minutes tens of seconds
\\ seconds
N
N
\\\ N2 decades years months weeks
AN\
N\
\\\ N3 millennia
\

%

COMPARISON OF ALGORITHMS

Comparing two algorithms
We give the runtime for two popular sorting

algorithms as:
* insertion sortisn/4
* mergesortis2nlgn

For a large dataset (1 million items), how
long would it take to sort the data

* insertion sort takes roughly 70 hours
* merge sort takes roughly 40 seconds

For a faster machine it could be 40 minutes
versus less than 0.5 seconds

insertion sort vs merge sort

9000 -
n 8000
I
8 7000
g 6000
.5 5000
€ 4000
)
,§ 3000
+ 2000
=
= 1000 -

0 T I | | |
0 50 100 150 200
number of elements

insertion sort —— merge sort

COMPARISON OF ALGORITHMS

Affect of constant factors

The growth rate is not affected by
constant factors or

lower-order terms

Examples IE+18

102n + 10° is a linear function IE+16

1E+14
10° n% + 108 n is a quadratic 1E+12

function 1E+10

T(n)

1E+8 -

1E+6
1E+4
1E+2
1E+0

1E+20 -

= Quadratic

— Quadratic

= Linear
- Linear

1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

D

g o

4

g

77,
s ///

/w///// ///

BIG-OH NOTATION
The Big Oh notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if t

nere are positive

constants ¢ and n, such that 10,000 .

= 3n

f(n) < cg(n) for n 2 n0 — 2n+10 5

_ B
Example: Prove that 2n + 10 is O(n) L000 2
2n+10<cn 00 /,/
(c-2)n=>10
n>10/(c-2) 10 ==
Pick c = 3 and n, = 10 to satisfy the equation |

1
1 10 100

1,000

BIG-OH NOTATION

The Big Oh notation example
Example: Prove that n? is not O(n)
n’<cn

n<c

The above inequality cannot be
satisfied since ¢ must be a constant

1,000,000

100,000

10,000

1,000

100 -

10

1

10 100 1,000

///é/;//////

P

BIG-OH NOTATION

The Big Oh notation example

Example: Prove that 7n - 2 is O(n)
/n-2<cn

need ¢ >0 and ny 2 1 such that for n 2
No

thisistrueforc=7and n0=1

7

77 7).

BIG-OH NOTATION

The Big Oh notation example
Example: Prove that3 n®+20n2+ 5 is
O(n3)

3n3+20n?+5<cn3fornxn,

need ¢ >0 and n0 > 1 such that
this is true forc=4 and ny, =21

Z

/ /////////////

BIG-OH NOTATION

The Big Oh notation example
Example: Prove that 3 log n + 5 is O(log n)
3logn+5<clogn

need c > 0 and ny 2 1 such that for n > n,
this is true forc =8 and ny = 2

74,7

BIG-OH NOTATION
Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the growth rate of a function

The statement “f(n) is O(g(n))” means that the growth rate of f(n) is no
more than the growth rate of g(n)

We can use the big-Oh notation to rank functions according to their growth
rate

fln)is O(g(n)) g(n)is O(fin))
g(n) grows more Yes No
f(n) grows more No Yes
Same growth Yes Yes

7 e

WYL

Y

7

\
N\

4,4

BIG-OH NOTATION
Big-Oh rules

If is f(n) a polynomial of degree d, then f(n) is O(n9), i.e.,
* Drop lower-order terms

¢ Drop constant factors

Use the smallest possible class of functions
Say “2n is O(n)” instead of “2n is O(n?%)”

Use the simplest expression of the class
Say “3n + 5 is O(n)” instead of “3n + 5 is O(3 n)”

%
7
7,

’ ////////////%/ W/

7

y,

/,

7

, //////////////////

//

LW H

ASYMPTOTIC ALGORITHM ANALYSIS
» Asymptotic Analysis

* The asymptotic analysis of an algorithm determines the running time in
big-Oh notation

* To perform the asymptotic analysis

* We find the worst-case number of primitive operations executed as a function of
the input size

* We express this function with big-Oh notation

* Example:
* We say that algorithm arrayMax “runs in O(n) time”

* Since constant factors and lower-order terms are eventually dropped any

how, we can disregard them when counting primitive operations

4

7 iie—er gt

O = OO0 NN B~ W -

ASYMPTOTIC ALGORITHM ANALYSIS

« Asymptotic Analysis - Example

 Computing Prefix Averages: The i-th prefix average of an array X is average
of the first (i + 1) elements of X:

o Ali] = (X[O] + X[1] + ... + X[i])/(i+1)

/%% Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. */
public static double| | prefixAveragel(double[| x) { 32 -
int n = x.length; E ﬁ
double| | a = new double|n]; // filled with zeros by default 04 -
for (int j=0; j < n; j++) { —H N I
double total = 0; // begin computing x[0] + ... + x[j] 1| -
for (int i=0; i <= J; i++) 6 rrrtirm
total += x[if;
alj] = total / (j+1); // record the average g L e e
}
return a; . piil
} 1 2 3 4 5 6

© 2020 - Dr. Basit Qureshi

\\X\i
X

ASYMPTOTIC ALGORITHM ANALYSIS

« Asymptotic Analysis - Example

* The running time of prefixAveragel is
O(1+2+..+n)

* The sum of the first n integersisn(n +1) / 2
* There is a simple visual proof of this fact

* Thus, algorithm prefixAveragel runs in O(n?)
time

.\ © 2020 - Dr. Basit Qureshi

\

* ASYMPTOTIC ALGORITHM ANALYSIS

« Asymptotic Analysis — Example 2
* Here is prefixAverage2 runningin O(n) time

1 /x% Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. */
2 public static double[| prefixAverage2(double| | x) {
3 int n = x.length;
\ 4 double|] a = new double|n]; // filled with zeros by default
§ 5 double total = 0; // compute prefix sum as x[0] + x[1] + ...
\ 6 for (int j=0;] < n; j++) {
§ 7 total += x[j]; // update prefix sum to include x|j]
\\ 8 alj] = total / (j+1); // compute average based on current sum
A\ 0
§\\ 10 return a;
. W
\

© 2020 - Dr. Basit Qureshi

//////,//////*//// .

77 // Zsa
/;/%////

////////////////

N

V7

RELATIVES OF BIG OH

» Relatives of Big Oh
* big-Omega

* f(n) is Q(g(n)) if there is a constant c >0 and an integer constant n0 > 1
such that

f(n) 2 cg(n) forn=n0

* big-Theta

* f(n) is ©(g(n)) if there are constants ¢’ >0 and ¢’ > 0 and an integer
constant nO = 1 such that

c’g(n) < f(n) < c”’g(n) forn=>n0

s

Z

7.

y/4

/;/;/////

/

RELATIVES OF BIG OH

» Relatives of Big Oh
* big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
* big-Omega

f(n) is Q(g(n)) if f(n) is asymptotically greater than or equal to g(n)
* big-Theta

f(n) is ©(g(n)) if f(n) is asymptotically equal to g(n)

© 2020 - Dr. Basit Qureshi

\'\\\$

Math you need to Review

D

2 Summations 2 Properties of powers:
b — 7b
2 Powers albre) = aba ¢
_ abc = (@b)c
Q Logarithms ab /ac = a(b-<)
2 Proof techniques =~ D =a"%"
bc = g c*logb
d

Basic probability Properties of logarithms:

0g,(Xxy) = log,x + logyy
og;, (X/y) = logyX - log,y
ogyxa = alog,x

0g,a = log,a/log,b

© 2020 - Dr. basit yuresni

ANALYSIS OF RECURSIVE
ALGORITHMS

RECURSION
RECURSION
RECI R\l()\
REC l R\I()\

RECURSION
Rl;(l RSION

RECURSION

RECURSION

Here we go again

RECURSION

Here we go again

© 2020 - Dr. Basit Qureshi

© 2020 - Dr. Basit Qureshi

NN
N

RECURSION

» Recursion: when a method calls itself
* Classic example —the factorial function:
n| — 1. 2. 3. T (n_l). n

| 1fn=0
f(n)={

////////////////

/ /,%/////////

4/ ///

© 2020 - Dr. Basit Qureshi

1

5
6

8

}

n-f(n—-1) else

public static int factorial(int n) throws lllegalArgumentException {

2 o if (n < 0)
throw new lllegalArgumentException();
Base Case else if (n == 0)

return 1;
else

Recursive Cal| ===em=pp return n * factorial(n—1);

// argument must be nonnegative

// base case

// recursive case

/@%%%/

7z

e

77 it

4

) 4

2.

Y

77

V) e

RECURSION

* Building a recursion tree:
« A box for each recursive call
« An arrow from each caller to callee
« An arrow from each callee to caller showing return value \can

return 46 =24 —— » final answer

[factorial (4)

\call return 3*2 =6
l: public static int factorial (int n) { [factorial (3)
2. if(n == 0) actoria
3: return 1; \qca” return 2*1 = 2
4: else [factorial (2)
5: return n * factorial(n - 1); \|| retum 1*1 = 1
ca u =
6: }
[factorial (1) I
\call return 1
So what is the runtime for factorial ()? [actorial (O)

© 2020 - Dr. Basit Qureshi

\\\‘\\\\\

N

\

RECURSION
« Runtime as Big Oh

« A box for each recursive call
« An arrow from each caller to callee
+ An arrow from each callee to caller showing return value return 476 =24~ final answer

[factorial (4)

\Call return 3*2 =6
1l: public static int factorial (int n) { .
§ 2. if(n == 0) [factorial (3)
\\\ 3- return 1; \‘03” return 2*1 = 2
\
\\\\ 4: else [factorial (2)
\ 5: return n * factorial(n - 1); = RN
a u =
§\ 6: }
\\ . . . [factorial (1)
2 Looking at the recursion tree, we can determine
§§ » factorial call is made for values 4, 3, 2, 1 and O; \call return 1
\\\ ° 1 i —
\\ 0 being the base case, there are 4 recursive calls when n = 4. [factorial (0)
§§ » for larger n, there would be n calls.
§\ * So the runtime for factorial can be given as O(n).

© 2020 - Dr. Basit Qureshi

/@%%%/

)

74

N\

Z4

2,
7

/ /,%/////////

7

& /7/////////

7

RECURSION

« Estimating the number of operations:
 Base call occurs only once
» Recursive calls are made repeatedly

« Recursion tree can help determine the order
of growth.

lop 1: public static int factorial (int n) {
lop 2: if(n == 0)

3: return 1;

4: else
Aops O return n * factorial(n - 1);

6: }

* Total recursive operations = 6 ; base-case operations is 1.

Looking at the recursion tree, we estimate the runtime to be linear
* SoT(nh)=6n+C

where c is a constant time (includes base case + cost of recursion)

© 2020 - Dr. Basit Qureshi

\‘call

return 46 =24 —— » final answer

factorial (4)

\call

factorial (3)

\cau

factorial (2)

\call

[factorial (1)

o

factorial (0)

return 3*2 =6

return 2*1 = 2

|

return

return 1*1 =1

" RECURSION

« Examples: Computing Powers

(1) | ifn=0
X, Nn)=
PLx, . _1 lse return 2*8=16 —» final answer
x-p(x,n ¢ xcau
[Power (2, 4) \
\call return 2*4=8
§ 1l: public static int Power (int x, int n) ({
§ 2 if(n == 0) [Power (2, 3)
\§ 3: return 1; \call return 2*2 = 4
N\
\\\ 4: else [Power (2, 2)
§ 5: return x * Power(x, n - 1);
N\ \can return 2*1 = 2
\ 6: }
\
A
2\

[Power (2, 1)

\S\ \cau return 1
\\ So what is the runtime for Power (2,4)? [Power (2, 0)

© 2020 - Dr. Basit Qureshi

§ N

RECURSION

« Examples: Reversing an array

: public static void reverse(int [] A, int i, int j) {

1
2: if(i >= j) o 1 2 3 4 5 6 7
3: return; \Ca” 1]16]8|2]4[3]9(7
4: else { [reverse (A, 0, 7
5: int temp = A[il; e oD TTeTsTela[s o T
. a — 2 . call
\ 6: A[i] = A[]]; \
§ 7: A[J] - temp; reverse(A,‘|,6) o 1 2 3 4 5 6 7
\§\ 8: return reverse (A, i+l, j-1); \Ca” 7|9(8(2(4|3|6]|1
§ 9: }
\Q [reverse (A, 2, 5) o 1 2 3 4 s 7
\%&\ \call 7(9(3|2|4|8|6]|1
\\§\\\ [reverse (A, 3, 4) o 1 2 3 4 6 7
f§\ 7|9|3(4|2|8]|6(1
\g\\ \call
§\\; . . (reverse (A, 4, 3)
\§\ So what is the runtime for reverse (A,0,7)?

O(n/2) If n =7; then n/2 calls were made to reach the middle of the array.

© 2020 - Dr. Basit Qureshi

N\ \\\\
NN
N

RECURSION

« Examples: Binary Search: Search for an integer in an ordered list
« We consider three cases:

- If the target equals data[mid], then we have found the target.
« If target < data[mid], then we recur on the first half of the sequence.
« If target > data[mid], then we recur on the second half of the sequence.

| 01 2 3 45 6 7 8 9 1011 12 13 14 15
§ 2(a{s|7]8|9o]12]1a]17]19[22]25[27]28]33]37
\ f 1‘. |
\\\ low mid high
NN
§ 2[als]7]s]o12]14 1; 1922 2f5 27]28[33]37
§\\ low mid high
A\
2\ 2lals|7]s8|o]12]1al1z|19]22]25[27]28(33]37
A\
\ T T
\\\\ low mid high
i\\\ 2(a|s5|7|8]o]12]1a]17]19]22]25(27]28](33|37
N\

low=mid=high

© 2020 - Dr. Basit Qureshi

A\

//// 7

7 ;/%w%/

i,

////,;/}//

N»%%%%%%ﬂw

RECURSION

« Examples: Binary Search

oo JdJdoyUld WNMNHKH

13:}

public static boolean Bsearch(int [] A, int X, int lo, int hi) {

if (lo >= hi)

return false;

else {

}

int mid = (lo+hi)/2;
if (X == A[mid]) (mM—U—bw+1:{
return true;

low + high
7

high —low + 1
D

J—lowg

else if (X < A[mid]) M@—(mm+w+1:hgh—{
return Bsearch (A, X, lo, mid-1);

else
return Bsearch (A, X, mid+1l, hi);

Iow—+—hith - high — low + 1
2 - 2 ’

—_ _

Each recursive call divides the search region in half; hence, there can be at
most /og n levels
So runtime is O(log n)

© 2020 - Dr. Basit Qureshi

Wi

’%V%%Wv
%%%%&%Wy

7 /;//'///,///////

o

i

~

w%%%%%

Z

RECURSION

« Examples: Fibonacci numbers

 Fibonacci numbers are defined recursively:
Fy= 0
F, =1
F,=F_ *F., fori>]l.

: public static int Fibonacci (int k) {
if (k==0)
return O;
else if (k==1)
return 1;
else

return Fibonacci (k-1) + Fibonacci (k-2) ;

oo JdJoy Ul d WD K

© 2020 - Dr. Basit Qureshi

RECURSION

« Examples: Fibonacci numbers

» Let n, be the number of recursive calls by BinaryFib(k)
c =1
e n =1
e n=m+m+1=1+1+1=3
e =mn+m+1=3+1+1=5
\ e m=mk+mn+1=5+3+1=9
\\\\\ e n=m+m+1=9+5+1=15

§ * N=+m+1=15+9+1=25
\ C =N+ s+ 1=25+15+1=41
3 =+ 1=41+25+1=67.

 Note that n, at least doubles every other time
.\« Thatis, n, > 2¥2, It is exponential. O(2")

© 2020 - Dr. Basit Qureshi

NOTE

Materials for this set of slides were extracted from

* Goodrich, Tamassia, Goldwasser ,"Analysis of Algorithms”, 6th edition,
Wiley, 2014

* Robert Sedgewick and Kevin Wayne, "Algorithms”, 4th edition, Addison
Wesley, 2011.

