
TREES
CS210 – Data Structures and Algorithms
Dr. Basit Qureshi

https://www.drbasit.org/

https://www.drbasit.org/

CS210:	THE	JOURNEY	SO	FAR
Runtime

Data Structure / Algorithm Bestcase Average Case Worst Case

Singly Linked Lists O(n) O(n) O(n)

Doubly Linked Lists O(n) O(n) O(n)

Circular Linked Lists O(n) O(n) O(n)

Stacks* O(1) O(1) O(1)

Queues* O(1) O(1) O(1)

Bubble Sort O(n2) O(n2) O(n2)

Selection Sort O(n2/2) O(n2/2) O(n2)

Insertion Sort O(n) O(n2/2) O(n2)

Merge Sort O(n log n) O(n log n) O(n log n)

Tim Sort O(n) O(n log n) O(n log n)

Quick Sort O(n log n) O(1.39 n log n) O(n2/2)

© 2020 - Dr. Basit Qureshi

* Limited operations

TREES
• Trees: Concepts
• Tree API
• Caveats in Making Trees
• Binary Trees

© 2020 - Dr. Basit Qureshi

TREES
• A tree is an abstract model of a

hierarchical structure
• A tree consists of nodes with a parent-

child relation
• Examples:

• Organization Chart
• File Structures
• Programming Environments
• Expression Trees

© 2020 - Dr. Basit Qureshi

Mammal

Dog Whale Bat

TREE	TERMINOLOGY
• Root
• Internal node: node with at least one child
• Leaf: node without children
• Ancestors: parent, grandparent, grand-grandparent, etc.
• Depth of a node: number of ancestors of a node
• Height of a tree: maximum depth of any node
• Descendant: child, grandchild, grand-grandchild, etc.
• Subtree: tree consisting of a node and its descendants

© 2020 - Dr. Basit Qureshi

A

B DC

G HE F

I J K

Trivia:
What is the Height of this tree?
What is the Depth at F?
What are the ancestors of G?
What are the decendants of B?

TREE	API

© 2020 - Dr. Basit Qureshi

Æ

B

void insert(int x);
Node remove(int x);
Node search(int x);
boolean isEmpty();
String toString();
Node getRoot();
Node getParent(Node);
List getChildren(Node);
Node getNumChildren();
boolean isLeaf(Node);
boolean isInternal();

Node Root;
int size;

Tree

Node();
Node(,);

int val;
Node parent;
List Children;

Node

Additional methods can be defined as necessary

IMPLEMENTING	A	TREE

© 2020 - Dr. Basit Qureshi

Æ

B

DA

C E

F

B

Æ Æ

A D F

Æ

C

Æ

EComplicated!
Is the runtime Linear or better?

© 2020 - Dr. Basit Qureshi

AVL Trees

Worst case:
O(log n)

BST Trees

Avg case:
O(log n)

Worst case:
O(n)

Binary Trees

Avg case:
O(log n)

Worst case:
O(n)

Trees

Avg case:
O(n)

BINARY	TREES
• A binary tree is a tree with the

following properties:
o Each internal node has at most two

children (exactly two for proper binary
trees)

o The children of a node are an ordered pair

• We call the children of an internal
node left child and right child

• Alternative recursive definition: a
binary tree is either
o a tree consisting of a single node, or
o a tree whose root has an ordered pair of

children, each of which is a binary tree

© 2020 - Dr. Basit Qureshi

A

B C

F GD E

H I

BINARY	TREES

© 2020 - Dr. Basit Qureshi

• Notation
n number of nodes
e number of external

nodes
i number of internal

nodes
h height

Properties:
n n = 2h - 1
n e = i + 1
n n = 2e - 1
n h £ i
n h £ (n - 1)/2
n e £ 2h

n h ³ log2 e
n h ³ log2 (n + 1) – 1

BINARY	TREES
• Binary tree associated with an arithmetic expression

• internal nodes: operators
• external nodes: operands

• Examples: arithmetic expression tree for the expression
(2 ´ (a - 1) + (3 ´ b))

© 2020 - Dr. Basit Qureshi

+

´´

-2

a 1

3 b

BINARY	TREES
• Binary tree associated with a decision process

• internal nodes: questions with yes/no answer
• external nodes: decisions

• Example: dining decision

© 2020 - Dr. Basit Qureshi

Want a fast meal?

How about coffee? On expense account?

Starbucks Chipotle Gracie’s Café Paragon

Yes No

Yes No Yes No

BINARY	TREE	API

© 2020 - Dr. Basit Qureshi

void insert(int x);
Node remove(int x);
Node search(int x);
boolean isEmpty();
String toString();
Node getRoot();
Node getParent(Node);
List getLChild(Node);
List getRChild(Node);
boolean isLeaf(Node);
boolean isInternal();

Node Root;
int size;

BinaryTree

Node();
Node(,);

int val;
Node parent;
Node left;
Node right;

Node

Additional methods can be defined as necessary

Bleft right

parent

BINARY	TREE	WITH	LINKED	STRUCTURES

© 2020 - Dr. Basit Qureshi

B

DA

C E

Æ Æ

Æ Æ Æ Æ

B

A D

C E

Æ

Is the runtime Linear or better?
• Insert
• Search
• Delete

BINARY	TREE	WITH	LINKED	STRUCTURES

© 2020 - Dr. Basit Qureshi

Deletion is a problem!

1

34

72

5

9

1

34

72

5

9

1

34

72

5

9

Deletion problem!
• Delete node that is a leaf
• Delete node that has one child
• Delete node that has two children

BINARY	TREE	WITH	ARRAYS
• Fixed size, but faster?!! A B D G H ……

2 3 10 111

1

2 3

6 74 5

10 11

A

HG

FE

D

C

B

J

Node v is stored at A[position(v)]
n position(root) = 1
n Parent(v) = position(v) / 2
n LeftChild(v) = position(v) * 2
n RightChild(v) = position(v) * 2 + 1

Does it improve the runtime?
• Insert
• Search
• Delete

What about the deletion problem!
• Delete node that is a leaf
• Delete node that has one child
• Delete node that has two children

© 2020 - Dr. Basit Qureshi

AVL Trees

Worst case:
O(log n)

BST Trees

Avg case:
O(log n)

Worst case:
O(n)

Binary Trees

Avg case:
O(log n)

Worst case:
O(n)

Trees

Avg case:
O(n)

BINARY	SEARCH	TREES
• Definition. A BST is a binary tree in symmetric order.
• A binary tree is either:

• Empty.
• Two disjoint binary trees (left and right).

• Symmetric order. Each node has a key,
and every node’s key is:

• Larger than all keys in its left subtree.
• Smaller than all keys in its right subtree.

© 2020 - Dr. Basit Qureshi

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree

© 2020 - Dr. Basit Qureshi

AVL Trees

Worst case:
O(log n)

BST Trees

Avg case:
O(log n)

Worst case:
O(n)

Binary Trees

Avg case:
O(log n)

Worst case:
O(n)

Trees

Avg case:
O(n)

AVL	TREES
• Adelson-Velsky and Landis (AVL)
• A Self Balancing Binary Search Tree
• Cost of Insert, Remove, Search is O(log n)

© 2020 - Dr. Basit Qureshi

AVL	TREES
• Algorithm:

1. Check Balanced Tree .i.e the height difference should not exceed ONE

© 2020 - Dr. Basit Qureshi

AVL	TREES
• Algorithm:

2. If not Balanced then ROTATE

© 2020 - Dr. Basit Qureshi

20

10

30
A

B

C D

20

10 30

A B C D

RR

AVL	TREES
• Algorithm:

2. If not Balanced then ROTATE

© 2020 - Dr. Basit Qureshi

20

30

10

A B

C

D

20

10 30

A B C D

LL

AVL	TREES
• Algorithm:

2. If not Balanced then ROTATE

© 2020 - Dr. Basit Qureshi

20

10

15

A

B C

D

15

10 20

A B C D

RL

AVL	TREES
• Algorithm:

2. If not Balanced then ROTATE

© 2020 - Dr. Basit Qureshi

5

10

7
A

B C

D

7

5 10

A B C D

LR

AVL	TREES
• Cost of Checking Height is O(log n).

• The Check_height is conducted only when a node is inserted of removed.
• The max number of nodes in a branch is log n, where n is the max number

of nodes.
• Cost of a Rotation is constant

• 2-4 operations per rotation
• The overall cost is O(log n) for insertion and removal
• The cost is O(log n) for search.

© 2020 - Dr. Basit Qureshi

CS210:	THE	JOURNEY	SO	FAR
Runtime

Data Structure / Algorithm Bestcase Average Case Worst Case

Singly Linked Lists O(n) O(n) O(n)

Doubly Linked Lists O(n) O(n) O(n)

Circular Linked Lists O(n) O(n) O(n)

Stacks* O(1) O(1) O(1)

Queues* O(1) O(1) O(1)

Binary Search Trees O(1) O(1.39 log n) O(n)

AVL Trees O(1) O(log n) O(log n)

Bubble Sort O(n2) O(n2) O(n2)

Selection Sort O(n2/2) O(n2/2) O(n2)

Insertion Sort O(n) O(n2/2) O(n2)

Merge Sort O(n log n) O(n log n) O(n log n)

Tim Sort O(n) O(n log n) O(n log n)

Quick Sort O(n log n) O(1.39 n log n) O(n2/2)© 2020 - Dr. Basit Qureshi

