TREES

CS210 - Data Structures and Algorithms

CS210: THE JOURNEY SO FAR

	Runtime		
Data Structure / Algorithm	Bestcase	Average Case	Worst Case
Singly Linked Lists	O(n)	O(n)	O(n)
Doubly Linked Lists	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Circular Linked Lists	$\mathrm{O}(\mathrm{n})$	O(n)	O(n)
Stacks*	O(1)	O(1)	O(1)
Queues*	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Bubble Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Selection Sort	$\mathrm{O}\left(\mathrm{n}^{2} / 2\right)$	$\mathrm{O}\left(\mathrm{n}^{2} / 2\right)$	$O\left(n^{2}\right)$
Insertion Sort	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}\left(\mathrm{n}^{2} / 2\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Merge Sort	$O(n \log n)$	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	$O(n \log n)$
Tim Sort	$\mathrm{O}(\mathrm{n})$	$O(n \log n)$	$O(n \log n)$
Quick Sort	$O(n \log n)$	$\mathrm{O}(1.39 \mathrm{n} \log \mathrm{n})$	$\mathrm{O}\left(\mathrm{n}^{2} / 2\right)$

TREES

- Trees: Concepts
- Tree API
- Caveats in Making Trees
- Binary Trees

TREES

- A tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parentchild relation
- Examples:
- Organization Chart
- File Structures

- Programming Environments
- Expression Trees

TREE TERMINOLOGY

- Root
- Internal node: node with at least one child
- Leaf: node without children
- Ancestors: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors of a node
- Height of a tree: maximum depth of any node
- Descendant: child, grandchild, grand-grandchild, etc.
- Subtree: tree consisting of a node and its descendants

Trivia:
What is the Height of this tree?
What is the Depth at F?
What are the ancestors of G ?
What are the decendants of B ?

TREE API

Tree
Node Root; int size;
void insert(int x);
Node remove(int x);
Node search(int x);
boolean isEmpty();
String toString();
Node getRoot();
Node getParent(Node);
List getChildren(Node);
Node getNumChildren();
boolean isLeaf(Node);
boolean isInternal();

Node
int val;
Node parent;
List Children;
Node (); Node(,);

B

Additional methods can be defined as necessary

IMPLEMENTING A TREE

BINARY TREES

- A binary tree is a tree with the following properties:
o Each internal node has at most two children (exactly two for proper binary trees)
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a
 binary tree is either
- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a binary tree

BINARY TREES

- Notation
n number of nodes
\boldsymbol{e} number of external nodes
i number of internal nodes
\boldsymbol{h} height
- Properties:
- $n=\mathbf{2}^{h}-\mathbf{1}$
- $\boldsymbol{e}=\boldsymbol{i}+1$
- $n=2 e-1$
- $h \leq i$
- $\boldsymbol{h} \leq(\boldsymbol{n}-1) / 2$
- $e \leq 2^{h}$
- $h \geq \log _{2} e$
- $\boldsymbol{h} \geq \log _{2}(\boldsymbol{n}+1)-1$

BINARY TREES

- Binary tree associated with an arithmetic expression
- internal nodes: operators
- external nodes: operands
- Examples: arithmetic expression tree for the expression $(2 \times(a-1)+(3 \times b))$

BINARY TREES

- Binary tree associated with a decision process
- internal nodes: questions with yes/no answer
- external nodes: decisions
- Example: dining decision

BINARY TREE API

BinaryTree
$\left.$Node Root; int size; void insert(int x); Node remove(int x); Node search(int x); boolean isEmpty(); String toString(); Node getRoot(); Node getParent(Node); List getLChild(Node); List getRChild(Node); boolean isLeaf(Node); boolean isInternal();${ }^{2} \right\rvert\,$

Node
int val;
Node parent;
Node left;
Node right;
Node ();
Node (,);

Additional methods can be defined as necessary

BINARY TREE WITH LINKED STRUCTURES

Is the runtime Linear or better?

- Insert

- Search
- Delete

BINARY TREE WITH LINKED STRUCTURES
Deletion is a problem!

Deletion problem!

- Delete node that is a leaf
- Delete node that has one child
- Delete node that has two children

BINARY TREE WITH ARRAYS

- Fixed size, but faster?!!

Node v is stored at A[position(v)]
■ position(root) = 1
■ Parent(v) $=$ position(v) / 2
■ LeftChild(v) = position (v) * 2
■ RightChild(v) $=$ position(v) * $2+1$

Does it improve the runtime?

- Insert
- Search
- Delete

What about the deletion problem!

- Delete node that is a leaf
- Delete node that has one child

BINARY SEARCH TREES

- Definition. A BST is a binary tree in symmetric order.
- A binary tree is either:
- Empty.
- Two disjoint binary trees (left and right).
- Symmetric order. Each node has a key, and every node's key is:
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

AVL TREES

- Adelson-Velsky and Landis (AVL)
- A Self Balancing Binary Search Tree
- Cost of Insert, Remove, Search is O(log n)

AVL TREES

- Algorithm:

1. Check Balanced Tree .i.e the height difference should not exceed ONE

AVL TREES

- Algorithm:

2. If not Balanced then ROTATE

AVL TREES

- Algorithm:

2. If not Balanced then ROTATE

AVL TREES

- Algorithm:

2. If not Balanced then ROTATE

AVL TREES

- Algorithm:

2. If not Balanced then ROTATE

AVL TREES

- Cost of Checking Height is $\mathrm{O}(\log \mathrm{n})$.
- The Check_height is conducted only when a node is inserted of removed.
- The max number of nodes in a branch is $\log \mathrm{n}$, where n is the max number of nodes.
- Cost of a Rotation is constant
- 2-4 operations per rotation
- The overall cost is $O(\log n)$ for insertion and removal
- The cost is $\mathrm{O}(\log \mathrm{n})$ for search.

CS210: THE JOURNEY SO FAR

	Runtime		
Data Structure / Algorithm	Bestcase	Average Case	Worst Case
Singly Linked Lists	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Doubly Linked Lists	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	O(n)
Circular Linked Lists	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Stacks*	$\mathrm{O}(1)$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Queues*	$\mathrm{O}(1)$	O(1)	$\mathrm{O}(1)$
Binary Search Trees	$\mathrm{O}(1)$	$\mathrm{O}(1.39 \log \mathrm{n})$	$\mathrm{O}(\mathrm{n})$
AVL Trees	$\mathrm{O}(1)$	O($\log \mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$
Bubble Sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Selection Sort	$O\left(n^{2} / 2\right)$	$O\left(n^{2} / 2\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Insertion Sort	$\mathrm{O}(\mathrm{n})$	$O\left(n^{2} / 2\right)$	$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Merge Sort	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	$O(n \log n)$	$O(n \log n)$
Tim Sort	$\mathrm{O}(\mathrm{n})$	$O(n \log n)$	$O(n \log n)$
Quick Sort ${ }_{\text {Qureshi }}$	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	$\mathrm{O}(1.39 \mathrm{n} \log \mathrm{n})$	$O\left(n^{2} / 2\right)$

