
1.1 BASIC PROGRAMMING MODEL

Our study of algorithms is based upon implementing them as programs written in
the Java programming language. We do so for several reasons:

■ Our programs are concise, elegant, and complete descriptions of algorithms.
■ You can run the programs to study properties of the algorithms.
■ You can put the algorithms immediately to good use in applications.

These are important and significant advantages over the alternatives of working with
English-language descriptions of algorithms.

A potential downside to this approach is that we have to work with a specific pro-
gramming language, possibly making it difficult to separate the idea of the algorithm
from the details of its implementation. Our implementations are designed to mitigate
this difficulty, by using programming constructs that are both found in many modern
languages and needed to adequately describe the algorithms.

We use only a small subset of Java. While we stop short of formally defining the
subset that we use, you will see that we make use of relatively few Java constructs, and
that we emphasize those that are found in many modern programming languages. The
code that we present is complete, and our expectation is that you will download it and
execute it, on our test data or test data of your own choosing.

We refer to the programming constructs, software libraries, and operating system
features that we use to implement and describe algorithms as our programming model.
In this section and Section 1.2, we fully describe this programming model. The treat-
ment is self-contained and primarily intended for documentation and for your refer-
ence in understanding any code in the book. The model we describe is the same model
introduced in our book An Introduction to Programming in Java: An Interdisciplinary
Approach, which provides a slower-paced introduction to the material.

For reference, the figure on the facing page depicts a complete Java program that
illustrates many of the basic features of our programming model. We use this code for
examples when discussing language features, but defer considering it in detail to page
46 (it implements a classic algorithm known as binary search and tests it for an applica-
tion known as whitelist filtering). We assume that you have experience programming
in some modern language, so that you are likely to recognize many of these features in
this code. Page references are included in the annotations to help you find answers to
any questions that you might have. Since our code is somewhat stylized and we strive
to make consistent use of various Java idioms and constructs, it is worthwhile even for
experienced Java programmers to read the information in this section.

8

import java.util.Arrays;

public class BinarySearch
{
 public static int rank(int key, int[] a)
 {
 int lo = 0;
 int hi = a.length - 1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

 public static void main(String[] args)
 {

 int[] whitelist = In.readInts(args[0]);

 Arrays.sort(whitelist);

 while (!StdIn.isEmpty())
 {
 int key = StdIn.readInt();
 if (rank(key, whitelist) == -1)
 StdOut.println(key);
 }
 }

}

expression (see page 11)

call a method in our standard library;
need to download code (see page 27)

call a method in a Java library (see page 27)

call a local method
(see page 27)

import a Java library (see page 27)

code must be in file BinarySearch.java (see page 26)

initializing
declaration statement

(see page 16)

command line
(see page 36)

static method (see page 22)

unit test client (see page 26)

loop statement
(see page 15)

conditional statement
(see page 15)

system calls main()

system passes argument value
"whitelist.txt" to main()

Anatomy of a Java program and its invocation from the command line

parameter
variables

return type parameter type

return statement

no return value; just side effects (see page 24)

% java BinarySearch largeW.txt < largeT.txt

499569
984875
...

file name (args[0])

file redirectd from StdIn
(see page 40)

StdOut
(see page 37)

91.1 ■ Basic Programming Model

 Primitive data types and expressions A data type is a set of values and a set of
operations on those values. We begin by considering the following four primitive data
types that are the basis of the Java language:

■ Integers, with arithmetic operations (int)
■ Real numbers, again with arithmetic operations (double)
■ Booleans, the set of values { true, false } with logical operations (boolean)
■

Characters, the alphanumeric characters and symbols that you type (char)
Next we consider mechanisms for specifying values and operations for these types.

A Java program manipulates variables that are named with identifiers. Each variable
is associated with a data type and stores one of the permissible data-type values. In Java
code, we use expressions like familiar mathematical expressions to apply the operations
associated with each type. For primitive types, we use identifiers to refer to variables,
operator symbols such as + - * / to specify operations, literals such as 1 or 3.14 to
specify values, and expressions such as (x + 2.236)/2 to specify operations on values.
The purpose of an expression is to define one of the data-type values.

term examples definition

primitive
data type int double boolean char

a set of values and a set of
operations on those values

(built in to the Java language)

identifier a abc Ab$ a_b ab123 lo hi
a sequence of letters, digits,
_, and $, the first of which is

not a digit

variable [any identifier] names a data-type value

operator + - * / names a data-type operation

literal source-code representation
of a value

int 1 0 -42
double 2.0 1.0e-15 3.14
boolean true false
char 'a' '+' '9' '\n'

expression
a literal, a variable, or a

sequence of operations on
literals and/or variables that

produces a value

int lo + (hi - lo)/2
double 1.0e-15 * t
boolean lo <= hi

Basic building blocks for Java programs

111.1 ■ Basic Programming Model

To define a data type, we need only specify the values and the set of operations on
those values. This information is summarized in the table below for Java’s int, double,
boolean, and char data types. These data types are similar to the basic data types found
in many programming languages. For int and double, the operations are familiar
arithmetic operations; for boolean, they are familiar logical operations. It is important
to note that +, -, *, and / are overloaded—the same symbol specifies operations in mul-
tiple different types, depending on context. The key property of these primitive opera-
tions is that an operation involving values of a given type has a value of that type. This rule
highlights the idea that we are often working with approximate values, since it is often
the case that the exact value that would seem to be defined by the expression is not a
value of the type. For example, 5/3 has the value 1 and 5.0/3.0 has a value very close
to 1.66666666666667 but neither of these is exactly equal to 5/3. This table is far from
complete; we discuss some additional operators and various exceptional situations that
we occasionally need to consider in the Q&A at the end of this section.

type set of values operators
typical expressions

expression value

int

integers between
231 and!231" 1
(32-bit two’s
complement)

+ (add)
- (subtract)
* (multiply)
/ (divide)

% (remainder)

5 + 3

5 - 3

5 * 3

5 / 3

5 % 3

8

2

15

1

2

double

double-precision
real numbers

(64-bit IEEE 754
standard)

+ (add)
- (subtract)
* (multiply)
/ (divide)

3.141 - .03

2.0 - 2.0e-7

100 * .015

6.02e23 / 2.0

3.111

1.9999998

1.5

3.01e23

boolean true or false

&& (and)
|| (or)
! (not)
^ (xor)

true && false

false || true

!false

true ^ true

false

true

true

false

char
characters
(16-bit)

[arithmetic operations, rarely used]

 Primitive data types in Java

12 CHAPTER 1 ■ Fundamentals

To define a data type, we need only specify the values and the set of operations on
those values. This information is summarized in the table below for Java’s int, double,
boolean, and char data types. These data types are similar to the basic data types found
in many programming languages. For int and double, the operations are familiar
arithmetic operations; for boolean, they are familiar logical operations. It is important
to note that +, -, *, and / are overloaded—the same symbol specifies operations in mul-
tiple different types, depending on context. The key property of these primitive opera-
tions is that an operation involving values of a given type has a value of that type. This rule
highlights the idea that we are often working with approximate values, since it is often
the case that the exact value that would seem to be defined by the expression is not a
value of the type. For example, 5/3 has the value 1 and 5.0/3.0 has a value very close
to 1.66666666666667 but neither of these is exactly equal to 5/3. This table is far from
complete; we discuss some additional operators and various exceptional situations that
we occasionally need to consider in the Q&A at the end of this section.

type set of values operators
typical expressions

expression value

int

integers between
231 and!231" 1
(32-bit two’s
complement)

+ (add)
- (subtract)
* (multiply)
/ (divide)

% (remainder)

5 + 3

5 - 3

5 * 3

5 / 3

5 % 3

8

2

15

1

2

double

double-precision
real numbers

(64-bit IEEE 754
standard)

+ (add)
- (subtract)
* (multiply)
/ (divide)

3.141 - .03

2.0 - 2.0e-7

100 * .015

6.02e23 / 2.0

3.111

1.9999998

1.5

3.01e23

boolean true or false

&& (and)
|| (or)
! (not)
^ (xor)

true && false

false || true

!false

true ^ true

false

true

true

false

char
characters
(16-bit)

[arithmetic operations, rarely used]

 Primitive data types in Java

12 CHAPTER 1 ■ Fundamentals

 Static methods Every Java program in this book is either a data-type definition
(which we describe in detail in Section 1.2) or a library of static methods (which we de-
scribe here). Static methods are called functions in many programming languages, since
they can behave like mathematical functions, as described next. Each static method is
a sequence of statements that are executed, one after the other, when the static method
is called, in the manner described below. The modifier static distinguishes these meth-
ods from instance methods, which we discuss in Section 1.2. We use the word method
without a modifier when describing characteristics shared by both kinds of methods.

 Defining a static method. A method encapsulates a computation that is defined as a
sequence of statements. A method takes arguments (values of given data types) and
computes a return value of some data type that depends upon the arguments (such
as a value defined by a mathematical function) or causes a side effect that depends on
the arguments (such as printing a value). The static method rank() in BinarySearch

is an example of the first; main() is an ex-
ample of the second. Each static method
is composed of a signature (the keywords
public static followed by a return type,
the method name, and a sequence of ar-
guments, each with a declared type) and
a body (a statement block: a sequence of
statements, enclosed in curly braces). Ex-
amples of static methods are shown in the
table on the facing page.

 Invoking a static method. A call on a static
method is its name followed by expressions
that specify argument values in parenthe-

ses, separated by commas. When the method call is part of an expression, the method
computes a value and that value is used in place of the call in the expression. For ex-
ample the call on rank() in BinarySearch() returns an int value. A method call
followed by a semicolon is a statement that generally causes side effects. For example,
the call Arrays.sort() in main() in BinarySearch is a call on the system method
Arrays.sort() that has the side effect of putting the entries in the array in sorted
order. When a method is called, its argument variables are initialized with the values
of the corresponding expressions in the call. A return statement terminates a static
method, returning control to the caller. If the static method is to compute a value, that
value must be specified in a return statement (if such a static method can reach the
end of its sequence of statements without a return, the compiler will report the error).

signature

method
body

return statement

methodreturn
nametype

argument
variable

local
variables

argument
type

call on another method

public static double sqrt (double c)

{
 if (c < 0) return Double.NaN;
 double err = 1e-15;

 double t = c;
 while (Math.abs(t - c/t) > err * t)
 t = (c/t + t) / 2.0;
 return t;
}

Anatomy of a static method

22 CHAPTER 1 ■ Fundamentals

 Recursion. A method can call itself (if you are not comfortable with this idea, known
as recursion, you are encouraged to work Exercises 1.1.16 through 1.1.22). For ex-
ample, the code at the bottom of this page gives an alternate implementation of the
rank() method in BinarySearch. We often use recursive implementations of methods
because they can lead to compact, elegant code that is easier to understand than a cor-
responding implementation that does not use recursion. For example, the comment
in the implementation below provides a succinct description of what the code is sup-
posed to do. We can use this comment to convince ourselves that it operates correctly,
by mathematical induction. We will expand on this topic and provide such a proof for
binary search in Section 3.1. There are three important rules of thumb in developing
recursive programs:

■

The recursion has a base case—we always include a conditional statement as the
first statement in the program that has a return.

■ Recursive calls must address subproblems that are smaller in some sense, so
that recursive calls converge to the base case. In the code below, the difference
between the values of the fourth and the third arguments always decreases.

■ Recursive calls should not address subproblems that overlap. In the code below,
the portions of the array referenced by the two subproblems are disjoint.

Violating any of these guidelines is likely to lead to incorrect results or a spectacularly
inefficient program (see Exercises 1.1.19 and 1.1.27). Adhering to them is likely to
lead to a clear and correct program whose performance is easy to understand. Another
reason to use recursive methods is that they lead to mathematical models that we can
use to understand performance. We address this issue for binary search in Section 3.2
and in several other instances throughout the book.

public static int rank(int key, int[] a)
{ return rank(key, a, 0, a.length - 1); }

public static int rank(int key, int[] a, int lo, int hi)
{ // Index of key in a[], if present, is not smaller than lo
 // and not larger than hi.
 if (lo > hi) return -1;
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) return rank(key, a, lo, mid - 1);
 else if (key > a[mid]) return rank(key, a, mid + 1, hi);
 else return mid;
}

 Recursive implementation of binary search

251.1 ■ Basic Programming Model

 APIs A critical component of modular programming is documentation that explains
the operation of library methods that are intended for use by others. We will consis-
tently describe the library methods that we use in this book in application programming
interfaces (APIs) that list the library name and the signatures and short descriptions of
each of the methods that we use. We use the term client to refer to a program that calls
a method in another library and the term implementation to describe the Java code that
implements the methods in an API.

Example. The following example, the API for commonly used static methods from the
standard Math library in java.lang, illustrates our conventions for APIs:

public class Math

static double abs(double a) absolute value of a
static double max(double a, double b) maximum of a and b
static double min(double a, double b)

minimum of a and b
Note 1: abs(), max(), and min() are defined also for int, long, and float.

static double sin(double theta) sine function
static double cos(double theta) cosine function
static double tan(double theta) tangent function

Note 2: Angles are expressed in radians. Use toDegrees() and toRadians() to convert.
Note 3: Use asin(), acos(), and atan() for inverse functions.

static double exp(double a) exponential (e a)
static double log(double a) natural log (loge a, or ln a)
static double pow(double a, double b) raise a to the bth power (ab)

static double random() random number in [0, 1)
static double sqrt(double a) square root of a

static double E value of e (constant)
static double PI value of ! (constant)

See booksite for other available functions.

API for Java’s mathematics library (excerpts)

28 CHAPTER 1 ■ Fundamentals

 Strings A String is a sequence of characters (char values). A literal String is a
sequence of characters within double quotes, such as "Hello, World". The data type
String is a Java data type but it is not a primitive type. We consider String now be-
cause it is a fundamental data type that almost every Java program uses.

 Concatenation. Java has a built-in concatenation operator (+) for String like the
built-in operators that it has for primitive types, justifying the addition of the row in
the table below to the primitive-type table on page 12. The result of concatenating two
String values is a single String value, the first string followed by the second.

Conversion. Two primary uses of strings are to convert values that we can enter on a
keyboard into data-type values and to convert data-type values to values that we can
read on a display. Java has built-in operations for String to facilitate these operations.
In particular, the language includes libraries Integer and Double that contain static
methods to convert between String values and int values and between String values
and double values, respectively.

public class Integer

static int parseInt(String s) convert s to an int value

static String toString(int i) convert i to a String value

public class Double

static double parseDouble(String s) convert s to a double value

static String toString(double x) convert x to a String value

APIs for conversion between numbers and String values

type set of values typical literals operators
typical expressions

expression value

String
character
sequences

"AB"
"Hello"
"2.5"

+
(concatenate)

"Hi, " + "Bob"

"12" + "34"

"1" + "+" + "2"

"Hi, Bob"

"1234"

"1+2"

Java’s String data type

34 CHAPTER 1 ■ Fundamentals

EXERCISES

1.1.1 Give the value of each of the following expressions:

a. (0 + 15) / 2

b. 2.0e-6 * 100000000.1

c. true && false || true && true

1.1.2 Give the type and value of each of the following expressions:

a. (1 + 2.236)/2

b. 1 + 2 + 3 + 4.0

c. 4.1 >= 4

d. 1 + 2 + "3"

1.1.3 Write a program that takes three integer command-line arguments and prints
equal if all three are equal, and not equal otherwise.

1.1.4 What (if anything) is wrong with each of the following statements?

a. if (a > b) then c = 0;

b. if a > b { c = 0; }

c. if (a > b) c = 0;
d. if (a > b) c = 0 else b = 0;

1.1.5 Write a code fragment that prints true if the double variables x and y are both
strictly between 0 and 1 and false otherwise.

1.1.6 What does the following program print?

int f = 0;
int g = 1;
for (int i = 0; i <= 15; i++)
{
 StdOut.println(f);
 f = f + g;
 g = f - g;
}

54 CHAPTER 1 ■ Fundamentals

1.1.7 Give the value printed by each of the following code fragments:

a. double t = 9.0;
 while (Math.abs(t - 9.0/t) > .001)
 t = (9.0/t + t) / 2.0;

 StdOut.printf("%.5f\n", t);

b. int sum = 0;
 for (int i = 1; i < 1000; i++)

 for (int j = 0; j < i; j++)

 sum++;

 StdOut.println(sum);

c. int sum = 0;
 for (int i = 1; i < 1000; i *= 2)

 for (int j = 0; j < N; j++)

 sum++;

 StdOut.println(sum);

1.1.8 What do each of the following print?

a. System.out.println('b');

b. System.out.println('b' + 'c');

c. System.out.println((char) ('a' + 4));

Explain each outcome.

1.1.9 Write a code fragment that puts the binary representation of a positive integer N
into a String s.

Solution: Java has a built-in method Integer.toBinaryString(N) for this job, but
the point of the exercise is to see how such a method might be implemented. Here is a
particularly concise solution:

String s = "";
for (int n = N; n > 0; n /= 2)
 s = (n % 2) + s;

551.1 ■ Basic Programming Model

1.1.10 What is wrong with the following code fragment?

int[] a;
for (int i = 0; i < 10; i++)
 a[i] = i * i;

Solution: It does not allocate memory for a[] with new. This code results in a
variable a might not have been initialized compile-time error.

1.1.11 Write a code fragment that prints the contents of a two-dimensional boolean
array, using * to represent true and a space to represent false. Include row and column
numbers.

1.1.12 What does the following code fragment print?

int[] a = new int[10];
for (int i = 0; i < 10; i++)
 a[i] = 9 - i;
for (int i = 0; i < 10; i++)
 a[i] = a[a[i]];
for (int i = 0; i < 10; i++)
 System.out.println(i);

1.1.13 Write a code fragment to print the transposition (rows and columns changed)
of a two-dimensional array with M rows and N columns.

1.1.14 Write a static method lg() that takes an int value N as argument and returns
the largest int not larger than the base-2 logarithm of N. Do not use Math.

1.1.15 Write a static method histogram() that takes an array a[] of int values and
an integer M as arguments and returns an array of length M whose ith entry is the num-
ber of times the integer i appeared in the argument array. If the values in a[] are all
between 0 and M–1, the sum of the values in the returned array should be equal to
a.length.

1.1.16 Give the value of exR1(6):

public static String exR1(int n)
{
 if (n <= 0) return "";
 return exR1(n-3) + n + exR1(n-2) + n;
}

EXERCISES (continued)

56 CHAPTER 1 ■ Fundamentals

1.1.17 Criticize the following recursive function:

public static String exR2(int n)
{
 String s = exR2(n-3) + n + exR2(n-2) + n;
 if (n <= 0) return "";
 return s;
}

Answer : The base case will never be reached. A call to exR2(3) will result in calls to
exR2(0), exR2(-3), exR3(-6), and so forth until a StackOverflowError occurs.

1.1.18 Consider the following recursive function:

public static int mystery(int a, int b)
{
 if (b == 0) return 0;
 if (b % 2 == 0) return mystery(a+a, b/2);
 return mystery(a+a, b/2) + a;
}

What are the values of mystery(2, 25) and mystery(3, 11)? Given positive integers
a and b, describe what value mystery(a, b) computes. Answer the same question, but
replace + with * and replace return 0 with return 1.

1.1.19 Run the following program on your computer:

public class Fibonacci
{
 public static long F(int N)
 {
 if (N == 0) return 0;
 if (N == 1) return 1;
 return F(N-1) + F(N-2);
 }

 public static void main(String[] args)
 {
 for (int N = 0; N < 100; N++)
 StdOut.println(N + " " + F(N));
 }
}

571.1 ■ Basic Programming Model

What is the largest value of N for which this program takes less 1 hour to compute the
value of F(N)? Develop a better implementation of F(N) that saves computed values in
an array.

1.1.20 Write a recursive static method that computes the value of ln (N !)

1.1.21 Write a program that reads in lines from standard input with each line contain-
ing a name and two integers and then uses printf() to print a table with a column of
the names, the integers, and the result of dividing the first by the second, accurate to
three decimal places. You could use a program like this to tabulate batting averages for
baseball players or grades for students.

1.1.22 Write a version of BinarySearch that uses the recursive rank() given on page
25 and traces the method calls. Each time the recursive method is called, print the argu-
ment values lo and hi, indented by the depth of the recursion. Hint: Add an argument
to the recursive method that keeps track of the depth.

1.1.23 Add to the BinarySearch test client the ability to respond to a second argu-
ment: + to print numbers from standard input that are not in the whitelist, - to print
numbers that are in the whitelist.

1.1.24 Give the sequence of values of p and q that are computed when Euclid’s algo-
rithm is used to compute the greatest common divisor of 105 and 24. Extend the code
given on page 4 to develop a program Euclid that takes two integers from the command
line and computes their greatest common divisor, printing out the two arguments for
each call on the recursive method. Use your program to compute the greatest common
divisor or 1111111 and 1234567.

1.1.25 Use mathematical induction to prove that Euclid’s algorithm computes the
greatest common divisor of any pair of nonnegative integers p and q.

EXERCISES (continued)

58 CHAPTER 1 ■ Fundamentals

CREATIVE PROBLEMS

1.1.26 Sorting three numbers. Suppose that the variables a, b, c, and t are all of the
same numeric primitive type. Show that the following code puts a, b, and c in ascending
order:

if (a > b) { t = a; a = b; b = t; }
if (a > c) { t = a; a = c; c = t; }
if (b > c) { t = b; b = c; c = t; }

1.1.27 Binomial distribution. Estimate the number of recursive calls that would be
used by the code

public static double binomial(int N, int k, double p)
{
 if ((N == 0) || (k < 0)) return 1.0;
 return (1.0 - p)*binomial(N-1, k) + p*binomial(N-1, k-1);
}

to compute binomial(100, 50). Develop a better implementation that is based on
saving computed values in an array.

1.1.28 Remove duplicates. Modify the test client in BinarySearch to remove any du-
plicate keys in the whitelist after the sort.

1.1.29 Equal keys. Add to BinarySearch a static method rank() that takes a key and
a sorted array of int values (some of which may be equal) as arguments and returns the
number of elements that are smaller than the key and a similar method count() that
returns the number of elements equal to the key. Note : If i and j are the values returned
by rank(key, a) and count(key, a) respectively, then a[i..i+j-1] are the values in
the array that are equal to key.

1.1.30 Array exercise. Write a code fragment that creates an N-by-N boolean array
a[][] such that a[i][j] is true if i and j are relatively prime (have no common fac-
tors), and false otherwise.

1.1.31 Random connections. Write a program that takes as command-line arguments
an integer N and a double value p (between 0 and 1), plots N equally spaced dots of size
.05 on the circumference of a circle, and then, with probability p for each pair of points,
draws a gray line connecting them.

591.1 ■ Basic Programming Model

1.1.32 Histogram. Suppose that the standard input stream is a sequence of double
values. Write a program that takes an integer N and two double values l and r from the
command line and uses StdDraw to plot a histogram of the count of the numbers in the
standard input stream that fall in each of the N intervals defined by dividing (l , r) into
N equal-sized intervals.

1.1.33 Matrix library. Write a library Matrix that implements the following API:

public class Matrix

static double dot(double[] x, double[] y) vector dot product

static double[][] mult(double[][] a, double[][] b) matrix-matrix product

static double[][] transpose(double[][] a) transpose

static double[] mult(double[][] a, double[] x) matrix-vector product

static double[] mult(double[] y, double[][] a) vector-matrix product

Develop a test client that reads values from standard input and tests all the methods.

1.1.34 Filtering. Which of the following require saving all the values from standard
input (in an array, say), and which could be implemented as a filter using only a fixed
number of variables and arrays of fixed size (not dependent on N)? For each, the input
comes from standard input and consists of N real numbers between 0 and 1.

■ Print the maximum and minimum numbers.
■ Print the median of the numbers.
■ Print the k th smallest value, for k less than 100.
■ Print the sum of the squares of the numbers.
■ Print the average of the N numbers.
■ Print the percentage of numbers greater than the average.
■ Print the N numbers in increasing order.
■ Print the N numbers in random order.

CREATIVE PROBLEMS (continued)

60 CHAPTER 1 ■ Fundamentals

EXPERIMENTS

1.1.35 Dice simulation. The following code computes the exact probability distribu-
tion for the sum of two dice:

int SIDES = 6;
double[] dist = new double[2*SIDES+1];
for (int i = 1; i <= SIDES; i++)
 for (int j = 1; j <= SIDES; j++)
 dist[i+j] += 1.0;

for (int k = 2; k <= 2*SIDES; k++)
 dist[k] /= 36.0;

The value dist[i] is the probability that the dice sum to k. Run experiments to vali-
date this calculation simulating N dice throws, keeping track of the frequencies of oc-
currence of each value when you compute the sum of two random integers between 1
and 6. How large does N have to be before your empirical results match the exact results
to three decimal places?

1.1.36 Empirical shuffle check. Run computational experiments to check that our
shuffling code on page 32 works as advertised. Write a program ShuffleTest that takes
command-line arguments M and N, does N shuffles of an array of size M that is initial-
ized with a[i] = i before each shuffle, and prints an M-by-M table such that row i
gives the number of times i wound up in position j for all j. All entries in the array
should be close to N/M.

1.1.37 Bad shuffling. Suppose that you choose a random integer between 0 and N-1
in our shuffling code instead of one between i and N-1. Show that the resulting order is
not equally likely to be one of the N! possibilities. Run the test of the previous exercise
for this version.

1.1.38 Binary search versus brute-force search. Write a program BruteForceSearch
that uses the brute-force search method given on page 48 and compare its running time
on your computer with that of BinarySearch for largeW.txt and largeT.txt.

611.1 ■ Basic Programming Model

1.1.39 Random matches. Write a BinarySearch client that takes an int value T as
command-line argument and runs T trials of the following experiment for N = 103, 104,
105, and 106: generate two arrays of N randomly generated positive six-digit int values,
and find the number of values that appear in both arrays. Print a table giving the average
value of this quantity over the T trials for each value of N.

EXPERIMENTS (continued)

62 CHAPTER 1 ■ Fundamentals

standard Java system types in java.lang

Integer int wrapper

Double double wrapper

String indexed chars

StringBuilder builder for strings

other Java types

java.awt.Color colors

java.awt.Font fonts

java.net.URL URLs

java.io.File files

our standard I/O types

In input stream

Out output stream

Draw drawing

data-oriented types for client examples

Point2D point in the plane

Interval1D 1D interval

Interval2D 2D interval

Date date

Transaction transaction

types for the analysis of algorithms

Counter counter

Accumulator accumulator

VisualAccumulator visual version

Stopwatch stopwatch

collection types

Stack pushdown stack

Queue FIFO queue

Bag bag

MinPQ MaxPQ priority queue

IndexMinPQ IndexMinPQ priority queue (indexed)

ST symbol table

SET set

StringST symbol table (string keys)

data-oriented graph types

Graph graph

Digraph directed graph

Edge edge (weighted)

EdgeWeightedGraph graph (weighted)

DirectedEdge edge (directed, weighted)

EdgeWeightedDigraph graph (directed, weighted)

operations-oriented graph types

UF dynamic connectivity

DepthFirstPaths DFS path searcher

CC connected components

BreadthFirstPaths BFS path search

DirectedDFS DFS digraph path search

DirectedBFS BFS digraph path search

TransitiveClosure all paths

Topological topological order

DepthFirstOrder DFS order

DirectedCycle cycle search

SCC strong components

MST minimum spanning tree

SP shortest paths

Selected ADTs used in this book

751.2 ■ Data Abstraction

public class Counter
{
 private final String name;
 private int count;

 public Counter(String id)
 { name = id; }

 public void increment()
 { count++; }

 public int tally()
 { return count; }

 public String toString()
 { return count + " " + name; }

 public static void main(String[] args)
 {
 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");

 heads.increment();
 heads.increment();
 tails.increment();

 StdOut.println(heads + " " + tails);
 StdOut.println(heads.tally() + tails.tally());
 }
}

Anatomy of a class that defines a data type

instance
variables

instance
methods

constructor

test client

invoke
constructor

invoke
method

automatically invoke
toString()

instance
variable
 name

create
and

initialize
objects

object
name

class
name

851.2 ■ Data Abstraction

public class Counter
{
 private final String name;
 private int count;

 public Counter(String id)
 { name = id; }

 public void increment()
 { count++; }

 public int tally()
 { return count; }

 public String toString()
 { return count + " " + name; }

}

 An abstract data type for a simple counter

API

typical client

applicationimplementation

public class Flips
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);

 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");

 for (int t = 0; t < T; t++)
 if (StdRandom.bernoulli(0.5))
 heads.increment();
 else tails.increment();

 StdOut.println(heads);
 StdOut.println(tails);
 int d = heads.tally() - tails.tally();
 StdOut.println("delta: " + Math.abs(d));
 }
}

public class Counter

Counter(String id) create a counter named id
void increment() increment the counter
int tally() number of increments since creation

String toString() string representation

% java Flips 1000000
500172 heads
499828 tails
delta: 344

891.2 ■ Data Abstraction

 Memory management. The ability to assign a new value to a reference variable cre-
ates the possibility that a program may have created an object that can no longer be
referenced. For example, consider the three assignment statements in the figure at left.
After the third assignment statement, not only do a and b refer to the same Date object
(1/1/2011), but also there is no longer a reference to the Date object that was created

and used to initialize b. The only reference to that object
was in the variable b, and this reference was overwritten
by the assignment, so there is no way to refer to the object
again. Such an object is said to be orphaned. Objects are
also orphaned when they go out of scope. Java programs
tend to create huge numbers of objects (and variables that
hold primitive data-type values), but only have a need for a
small number of them at any given point in time. Accord-
ingly, programming languages and systems need mecha-
nisms to allocate memory for data-type values during the
time they are needed and to free the memory when they
are no longer needed (for an object, sometime after it is
orphaned). Memory management turns out to be easier
for primitive types because all of the information needed
for memory allocation is known at compile time. Java (and
most other systems) takes care of reserving space for vari-
ables when they are declared and freeing that space when
they go out of scope. Memory management for objects is
more complicated: the system can allocate memory for an
object when it is created, but cannot know precisely when
to free the memory associated with each object because
the dynamics of a program in execution determines when
objects are orphaned. In many languages (such as C and
C++) the programmer is responsible for both allocating
and freeing memory. Doing so is tedious and notoriously

error-prone. One of Java’s most significant features is its ability to automatically man-
age memory. The idea is to free the programmers from the responsibility of managing
memory by keeping track of orphaned objects and returning the memory they use to
a pool of free memory. Reclaiming memory in this way is known as garbage collection.
One of Java’s characteristic features is its policy that references cannot be modified.
This policy enables Java to do efficient automatic garbage collection. Programmers still
debate whether the overhead of automatic garbage collection justifies the convenience
of not having to worry about memory management.

Date a = new Date(12, 31, 1999);
Date b = new Date(1, 1, 2011);
b = a;

811 1
812 1
813 2011

 b 811
 a 811

655 12
656 31
657 1999

New Year’s
 Eve 1999

New Year’s
 Day 2011

orphaned
object

references to
same object

An orphaned object

104 CHAPTER 1 ■ Fundamentals

EXERCISES

1.2.1 Write a Point2D client that takes an integer value N from the command line,
generates N random points in the unit square, and computes the distance separating
the closest pair of points.

1.2.2 Write an Interval1D client that takes an int value N as command-line argu-
ment, reads N intervals (each defined by a pair of double values) from standard input,
and prints all pairs that intersect.

1.2.3 Write an Interval2D client that takes command-line arguments N, min, and max
and generates N random 2D intervals whose width and height are uniformly distributed
between min and max in the unit square. Draw them on StdDraw and print the number
of pairs of intervals that intersect and the number of intervals that are contained in one
another.

1.2.4 What does the following code fragment print?

String string1 = "hello";
String string2 = string1;
string1 = "world";
StdOut.println(string1);
StdOut.println(string2);

1.2.5 What does the following code fragment print?

String s = "Hello World";
s.toUpperCase();
s.substring(6, 11);
StdOut.println(s);

Answer : "Hello World". String objects are immutable—string methods return
a new String object with the appropriate value (but they do not change the value
of the object that was used to invoke them). This code ignores the objects returned
and just prints the original string. To print "WORLD", use s = s.toUpperCase() and
s = s.substring(6, 11).

1.2.6 A string s is a circular rotation of a string t if it matches when the characters
are circularly shifted by any number of positions; e.g., ACTGACG is a circular shift of
TGACGAC, and vice versa. Detecting this condition is important in the study of genomic
sequences. Write a program that checks whether two given strings s and t are circular

114 CHAPTER 1 ■ Fundamentals

shifts of one another. Hint : The solution is a one-liner with indexOf(), length(), and
string concatenation.

1.2.7 What does the following recursive function return?

public static String mystery(String s)
{
 int N = s.length();
 if (N <= 1) return s;
 String a = s.substring(0, N/2);
 String b = s.substring(N/2, N);
 return mystery(b) + mystery(a);
}

1.2.8 Suppose that a[] and b[] are each integer arrays consisting of millions of inte-
gers. What does the follow code do? Is it reasonably efficient?

int[] t = a; a = b; b = t;

Answer. It swaps them. It could hardly be more efficient because it does so by copying
references, so that it is not necessary to copy millions of elements.

1.2.9 Instrument BinarySearch (page 47) to use a Counter to count the total number
of keys examined during all searches and then print the total after all searches are com-
plete. Hint : Create a Counter in main() and pass it as an argument to rank().

1.2.10 Develop a class VisualCounter that allows both increment and decrement
operations. Take two arguments N and max in the constructor, where N specifies the
maximum number of operations and max specifies the maximum absolute value for
the counter. As a side effect, create a plot showing the value of the counter each time its
tally changes.

1.2.11 Develop an implementation SmartDate of our Date API that raises an excep-
tion if the date is not legal.

1.2.12 Add a method dayOfTheWeek() to SmartDate that returns a String value
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday, giving the ap-
propriate day of the week for the date. You may assume that the date is in the 21st
century.

1151.2 ■ Data Abstraction

1.2.13 Using our implementation of Date as a model (page 91), develop an implementa-
tion of Transaction.

1.2.14 Using our implementation of equals() in Date as a model (page 103), develop
implementations of equals() for Transaction.

EXERCISES (continued)

116 CHAPTER 1 ■ Fundamentals

CREATIVE PROBLEMS

1.2.15 File input. Develop a possible implementation of the static readInts() meth-
od from In (which we use for various test clients, such as binary search on page 47) that
is based on the split() method in String.

Solution:

public static int[] readInts(String name)
{
 In in = new In(name);
 String input = StdIn.readAll();
 String[] words = input.split("\\s+");
 int[] ints = new int[words.length;
 for int i = 0; i < word.length; i++)
 ints[i] = Integer.parseInt(words[i]);
 return ints;
}

We will consider a different implementation in Section 1.3 (see page 126).

1.2.16 Rational numbers. Implement an immutable data type Rational for rational
numbers that supports addition, subtraction, multiplication, and division.

public class Rational

Rational(int numerator. int denominator)

Rational plus(Rational b) sum of this number and b

Rational minus(Rational b) difference of this number and b

Rational times(Rational b) product of this number and b

Rational divides(Rational b) quotient of this number and b

boolean equals(Rational that) is this number equal to that ?

String toString() string representation

You do not have to worry about testing for overflow (see Exercise 1.2.17), but use as
instance variables two long values that represent the numerator and denominator to
limit the possibility of overflow. Use Euclid’s algorithm (see page 4) to ensure that the
numerator and denominator never have any common factors. Include a test client that
exercises all of your methods.

1171.2 ■ Data Abstraction

1.2.17 Robust implementation of rational numbers. Use assertions to develop an im-
plementation of Rational (see Exercise 1.2.16) that is immune to overflow.

1.2.18 Variance for accumulator. Validate that the following code, which adds the
methods var() and stddev() to Accumulator, computes both the mean and variance
of the numbers presented as arguments to addDataValue():

public class Accumulator
{
 private double m;
 private double s;
 private int N;

 public void addDataValue(double x)
 {
 N++;
 s = s + 1.0 * (N-1) / N * (x - m) * (x - m);
 m = m + (x - m) / N;
 }

 public double mean()
 { return m; }

 public double var()
 { return s/(N - 1); }

 public double stddev()
 { return Math.sqrt(this.var()); }

}

This implementation is less susceptible to roundoff error than the straightforward im-
plementation based on saving the sum of the squares of the numbers.

CREATIVE PROBLEMS (continued)

118 CHAPTER 1 ■ Fundamentals

1.2.19 Parsing. Develop the parse constructors for your Date and Transaction im-
plementations of Exercise 1.2.13 that take a single String argument to specify the
initialization values, using the formats given in the table below.

Partial solution:

public Date(String date)
{
 String[] fields = date.split("/");
 month = Integer.parseInt(fields[0]);
 day = Integer.parseInt(fields[1]);
 year = Integer.parseInt(fields[2]);
}

type format example

Date integers separated by slashes 5/22/1939

Transaction
customer, date, and amount,

separated by whitespace Turing 5/22/1939 11.99

 Formats for parsing

1191.2 ■ Data Abstraction

