3.2 Binary Search Trees

- BSTs
- ordered operations
- deletion

3.2 Binary Search Trees

- BSTs

Algorithms

- ordered óperations
deletion

Robert Sedgewick । Kevin Wayne

http://algs4.cs.princeton.edu

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

Binary search tree demo
Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.
insert G

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is composed of four fields:

- A Key and a Value.
- A reference to the left and right subtree.


```
private class Node
{
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val)
    {
        this.key = key;
        this.val = val;
    }
}
```


BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value>
{
    private Node root;
    private class Node
    { /* see previous slide */ }
    public void put(Key key, Value val)
    { /* see next slides */ }
    public Value get(Key key)
    { /* see next slides */ }
    public void delete(Key key)
    { /* see next slides */ }
    public Iterable<Key> iterator()
    { /* see next slides */ }
}
```


BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return nul1;
}
```

Cost. Number of compares is equal to $1+$ depth of node.

Put. Associate value with key.

Search for key, then two cases:

- Key in tree \Rightarrow reset value.
- Key not in tree \Rightarrow add new node.
inserting L

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

```
public void put(Key key, Value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
        if (x == nul1) return new Node(key, val);
        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x.left = put(x.left, key, val);
        else if (cmp > 0)
            x.right = put(x.right, key, va1);
        else if (cmp == 0)
        x.va1 = va1;
        return x;
}
```

Cost. Number of compares is equal to $1+$ depth of node.

Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to $1+$ depth of node.

Bottom line. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If N distinct keys are inserted in random order, expected height of tree is $\sim 4.311 \ln N$.

How Tall is a Tree?

Bruce Reed
CNRS, Paris, France
reed@moka.ccr.jussieu.fr

ABSTRACT
Let H_{n} be the height of a random binary search tree on n nodes. We show that there exists constants $\alpha=4.31107$ and $\beta=1.95 \ldots$ such that $\mathrm{E}\left(H_{n}\right)=\alpha \log n-\beta \log \log n+$ $O(1)$, We also show that $\operatorname{Var}\left(H_{n}\right)=O(1)$.

But... Worst-case height is $N-1$.
[exponentially small chance when keys are inserted in random order]

ST implementations: summary

implementation	guarantee		average case		operations on keys
	search	insert	search hit	insert	
sequential search (unordered list)	N	N	$1 / 2 N$	N	equals()
binary search (ordered array)	$\lg N$	N	$\lg N$	$1 / 2 N$	compareTo()
BST	N	N	$1.39 \lg N$	$1.39 \lg N$	compareTo()

Why not shuffle to ensure a (probabilistic) guarantee of $4.311 \ln \mathrm{~N}$?

3.2 Binary Search Trees

Algorithms

BSTIS

- ordered óperations
- deletion

Robert Sedgewick I Kevin Wayne

ST implementations: summary

implementation	guarantee			average case			ordered ops?	operations on keys
	search	insert	delete	search hit	insert	delete		
sequential search (linked list)	N	N	N	$1 / 2 N$	N	$1 / 2 N$		equals()
binary search (ordered array)	$\lg N$	N	N	$\lg N$	$1 / 2 N$	$1 / 2 N$	\checkmark	compareTo()
BST	N	N	N	$1.39 \lg N$	$1.39 \lg N$		\checkmark	compareTo()

Next. Deletion in BSTs.

BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide search (but don't consider it equal in search).

delete I

Cost. $\sim 2 \ln N^{\prime}$ per insert, search, and delete (if keys in random order), where N^{\prime} is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

Deleting the minimum

To delete the minimum key:

- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.


```
public void deleteMin()
{ root = deleteMin(root); }
private Node deleteMin(Node x)
{
        if (x.left == null) return x.right;
    x.1eft = deleteMin(x.1eft);
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```


Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 0. [0 children] Delete t by setting parent link to null.

Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 1. [1 child] Delete t by replacing parent link.
deleting R
update counts after recursive calls \longrightarrow

Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 2. [2 children]

- Find successor x of t.
$\longleftarrow \quad x$ has no left child
- Delete the minimum in t's right subtree.
- Put x in t's spot.

$\longleftarrow \quad$ still a BST

Hibbard deletion: Java implementation

```
public void delete(Key key)
{ root = delete(root, key); }
private Node delete(Node x, Key key) {
    if (x == nul1) return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = delete(x.left, key); «_ search for key
    else if (cmp > 0) x.right = delete(x.right, key);
    else {
        if (x.right == nul1) return x.left;
        if (x.left == null) return x.right;
        Node t = x;
        x = min(t.right);
        x.right = deleteMin(t.right);
        x.left = t.left;
    }
    x.count = size(x.left) + size(x.right) + 1;
```



```
    return x;
}
```

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) $\Rightarrow \sqrt{ } N$ per op. Longstanding open problem. Simple and efficient delete for BSTs.

ST implementations: summary

implementation	guarantee			average case			ordered ops?	operations on keys
	search	insert	delete	search hit	insert	delete		
sequential search (linked list)	N	N	N	$1 / 2 N$	N	$1 / 2 N$		equals()
binary search (ordered array)	$\lg N$	N	N	$\lg N$	$1 / 2 N$	$1 / 2 N$	\checkmark	compareTo()
BST	N	N	N	$1.39 \lg N$	$1.39 \lg N$		\checkmark	compareTo()

Next lecture. Guarantee logarithmic performance for all operations.

