Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

AVL Trees

AVL Tree Definition

* AVL trees are balanced
* An AVL Tree is a 2 binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1

An example of an AVL tree where the heights are shown next to the nodes

Height of an AVL Tree

Fact: The height of an AVL tree storing n keys is $\mathrm{O}(\log \mathrm{n})$.
Proof (by induction): Let us bound $\mathrm{n}(\mathrm{h})$: the minimum number of internal nodes of an AVL tree of height h.

- We easily see that $\mathrm{n}(1)=1$ and $\mathrm{n}(2)=2$
- For $\mathrm{n}>2$, an AVL tree of height h contains the root node, one AVL subtree of height $\mathrm{n}-1$ and another of height $\mathrm{n}-2$.
- That is, $\mathrm{n}(\mathrm{h})=1+\mathrm{n}(\mathrm{h}-1)+\mathrm{n}(\mathrm{h}-2)$
- Knowing $n(h-1)>n(h-2)$, we get $n(h)>2 n(h-2)$. So $n(h)>2 n(h-2), n(h)>4 n(h-4), n(h)>8 n(n-6), \ldots$ (by induction), $n(h)>2^{i n}(h-2 i)$
- Solving the base case we get: $n(h)>2^{h / 2-1}$

Taking logarithms: $\mathrm{h}<2 \log \mathrm{n}(\mathrm{h})+2$

- Thus the height of an AVL tree is O(log n)

Insertion

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example:

after insertion

Trinode Restructuring

Let (a, b, c) be the inorder listing of x, y, z

- Perform the rotations needed to make b the topmost node of the three

Insertion Example, continued

Restructuring (as Single Rotations)

- Single Rotations:

Restructuring (as Double Rotations)

- double rotations:

Removal

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.
- Example:

before deletion of 32
after deletion

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
- We perform a trinode restructuring to restore balance at z
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

AVL Tree Performance

AVL tree storing n items

- The data structure uses $O(n)$ space

- A single restructuring takes $O(1)$ time
- using a linked-structure binary tree
- Searching takes O(log n) time
- height of tree is $\mathrm{O}(\log n)$, no restructures needed
- Insertion takes $O(\log n)$ time
- initial find is $\mathrm{O}(\log \mathrm{n})$
- restructuring up the tree, maintaining heights is $\mathrm{O}(\log n)$
- Removal takes O(log n) time
- initial find is $\mathrm{O}(\log n)$
- restructuring up the tree, maintaining heights is $\mathrm{O}(\log n)$

Java Implementation

```
/** An implementation of a sorted map using an AVL tree. */
public class AVLTreeMap<K,V> extends TreeMap<K,V> {
    /** Constructs an empty map using the natural ordering of keys. */
    public AVLTreeMap() { super(); }
    /** Constructs an empty map using the given comparator to order keys. */
    public AVLTreeMap(Comparator<K> comp) { super(comp); }
    /** Returns the height of the given tree position. */
    protected int height(Position<Entry<K,V>> p) {
        return tree.getAux(p);
    }
    /** Recomputes the height of the given position based on its children's heights. */
    protected void recomputeHeight(Position<Entry<K,V>> p) {
            tree.setAux(p, 1 + Math.max(height(left(p)), height(right(p))));
    }
    /** Returns whether a position has balance factor between -1 and 1 inclusive. */
    protected boolean isBalanced(Position<Entry<K,V>> p) {
            return Math.abs(height(left(p)) - height(right(p))) <= 1;
    }
```


Java Implementation, 2

19 /** Returns a child of p with height no smaller than that of the other child. */ protected Position<Entry<K,V>> tallerChild(Position<Entry<K,V>>p) \{
if $($ height $(\operatorname{left}(p))>$ height(right(p))) return left(p); // clear winner
if $($ height $(\operatorname{left}(p))<$ height(right(p))) return right(p); // clear winner
// equal height children; break tie while matching parent's orientation
if (isRoot (p)) return left (p); // choice is irrelevant
if $(p==\operatorname{left}($ parent $(p)))$ return left(p); // return aligned child
else return right(p);
\}

Java Implementation, 3

```
protected void rebalance(Position<Entry<K,V>> p) {
        int oldHeight, newHeight;
        do {
            oldHeight = height(p); // not yet recalculated if internal
            if (!isBalanced(p)) { // imbalance detected
            // perform trinode restructuring, setting p to resulting root,
            // and recompute new local heights after the restructuring
            p = restructure(tallerChild(tallerChild(p)));
            recomputeHeight(left(p));
            recomputeHeight(right(p));
        }
        recomputeHeight(p);
        newHeight = height(p);
        p = parent(p);
    } while (oldHeight != newHeight && p != null);
}
/** Overrides the TreeMap rebalancing hook that is called after an insertion. */
protected void rebalancelnsert(Position<Entry<K,V>> p) {
    rebalance(p);
}
/** Overrides the TreeMap rebalancing hook that is called after a deletion. */
protected void rebalanceDelete(Position<Entry<K,V>> p) {
    if (!isRoot(p))
            rebalance(parent(p));
}
}
```

