
http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

3.4 HASH TABLES

‣ hash functions
‣ separate chaining
‣ linear probing
‣ context

2

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

・Computing the hash function.

・Equality test: Method for checking whether two keys are equal.

・Collision resolution: Algorithm and data structure 
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

・No space limitation: trivial hash function with key as index.

・No time limitation: trivial collision resolution with sequential search.

・Space and time limitations: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

http://algs4.cs.princeton.eduhttp://algs4.cs.princeton.edu

‣ hash functions
‣ separate chaining
‣ linear probing
‣ context

3.4 HASH TABLES

4

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

・Efficiently computable.

・Each table index equally likely for each key.

 
 
Ex 1. Phone numbers.

・Bad: first three digits.

・Better: last three digits.

 
Ex 2. Social Security numbers.

・Bad: first three digits.

・Better: last three digits.

 
 
 
Practical challenge. Need different approach for each key type.

thoroughly researched problem,
still problematic in practical applications

573 = California, 574 = Alaska 
(assigned in chronological order within geographic region)

key

table
index

5

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

 
 
Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

 
 
 
 
 
 
 
Default implementation. Memory address of x.

Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, …

User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

6

Implementing hash code: integers, booleans, and doubles

public final class Integer
{
 private final int value;
 ...

 public int hashCode()
 { return value; }
}

convert to IEEE 64-bit representation; 
xor most significant 32-bits  
with least significant 32-bits

Warning: -0.0 and +0.0 have different hash codes

public final class Double
{
 private final double value;
 ...

 public int hashCode()
 {
 long bits = doubleToLongBits(value);
 return (int) (bits ^ (bits >>> 32));
 }
}

public final class Boolean
{
 private final boolean value;
 ...

 public int hashCode()
 {
 if (value) return 1231;
 else return 1237;
 }
}

Java library implementations

・Horner's method to hash string of length L: L multiplies/adds.

・Equivalent to h = s[0] · 31L–1 + … + s[L – 3] · 312 + s[L – 2] · 311 + s[L – 1] · 310.

Ex.

public final class String
{
 private final char[] s;
 ...

 public int hashCode()
 {
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
 }
}

7

Implementing hash code: strings

3045982 = 99·313 + 97·312 + 108·311 + 108·310
 = 108 + 31· (108 + 31 · (97 + 31 · (99)))

(Horner's method)

ith character of s

String s = "call"; 
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

Java library implementation

Performance optimization.

・Cache the hash value in an instance variable.

・Return cached value.

 
 
 
 
 
 
 
 
 
 
 
 
Q. What if hashCode() of string is 0?

public final class String
{
 private int hash = 0;
 private final char[] s;
 ...

 public int hashCode()
 {
 int h = hash;
 if (h != 0) return h;
 for (int i = 0; i < length(); i++)
 h = s[i] + (31 * h);
 hash = h;
 return h;
 }
}

8

Implementing hash code: strings

return cached value

cache of hash code

store cache of hash code

9

Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>
{
 private final String who;
 private final Date when;
 private final double amount;

 public Transaction(String who, Date when, double amount)
 { /* as before */ }

 ...

 public boolean equals(Object y) 
 { /* as before */ }

 public int hashCode()
 {
 int hash = 17;
 hash = 31*hash + who.hashCode();
 hash = 31*hash + when.hashCode();
 hash = 31*hash + ((Double) amount).hashCode();
 return hash;
 }
} typically a small prime

nonzero constant

for primitive types,
use hashCode() 
of wrapper type

for reference types,
use hashCode() 

10

Hash code design

"Standard" recipe for user-defined types.

・Combine each significant field using the 31x + y rule.

・If field is a primitive type, use wrapper type hashCode().

・If field is null, return 0.

・If field is a reference type, use hashCode().

・If field is an array, apply to each entry.

In practice. Recipe works reasonably well; used in Java libraries.

In theory. Keys are bitstring; "universal" hash functions exist.

Basic rule. Need to use the whole key to compute hash code; 
consult an expert for state-of-the-art hash codes.

or use Arrays.deepHashCode()

applies rule recursively

Hash code. An int between -231 and 231 - 1.

Hash function. An int between 0 and M - 1 (for use as array index).

11

Modular hashing

typically a prime or power of 2

 private int hash(Key key)
 { return key.hashCode() % M; }

bug

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % M; }

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

correct

1-in-a-billion bug

hashCode() of "polygenelubricants" is −231

x.hashCode()

x

hash(x)

12

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M − 1.

 
 
Bins and balls. Throw balls uniformly at random into M bins.

 
 
 
 
 
Birthday problem. Expect two balls in the same bin after ~ π M / 2 tosses.

 
Coupon collector. Expect every bin has ≥ 1 ball after ~ M ln M tosses.

 
Load balancing. After M tosses, expect most loaded bin has 
Θ (log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M − 1.

Bins and balls. Throw balls uniformly at random into M bins.

Java's String data uniformly distribute the keys of Tale of Two Cities

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

http://algs4.cs.princeton.eduhttp://algs4.cs.princeton.edu

‣ hash functions
‣ separate chaining
‣ linear probing
‣ context

3.4 HASH TABLES

15

Collisions

Collision. Two distinct keys hashing to same index.

・Birthday problem ⇒ can't avoid collisions unless you have 
a ridiculous (quadratic) amount of memory.

・Coupon collector + load balancing ⇒ collisions are evenly distributed.

 
 
 
 
 
 
 
 
 
 
 
Challenge. Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

・Hash: map key to integer i between 0 and M − 1.

・Insert: put at front of ith chain (if not already there).

・Search: need to search only ith chain.

16

Separate-chaining symbol table

public class SeparateChainingHashST<Key, Value>  
{ 
 private int M = 97; // number of chains 
 private Node[] st = new Node[M]; // array of chains

 private static class Node
 {
 private Object key;
 private Object val;
 private Node next;
 ...
 }

 private int hash(Key key) 
 { return (key.hashCode() & 0x7fffffff) % M; }

 public Value get(Key key) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key)) return (Value) x.val;
 return null;
 }

}

Separate-chaining symbol table: Java implementation

17

no generic array creation
(declare key and value of type Object)

array doubling and
halving code omitted

public class SeparateChainingHashST<Key, Value>  
{ 
 private int M = 97; // number of chains 
 private Node[] st = new Node[M]; // array of chains

 private static class Node
 {
 private Object key;
 private Object val;
 private Node next;
 ...
 }

 private int hash(Key key) 
 { return (key.hashCode() & 0x7fffffff) % M; }

 public void put(Key key, Value val) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key)) { x.val = val; return; }
 st[i] = new Node(key, val, st[i]);
 }

}

Separate-chaining symbol table: Java implementation

18

Proposition. Under uniform hashing assumption, prob. that the number of

keys in a list is within a constant factor of N / M is extremely close to 1.

 
Pf sketch. Distribution of list size obeys a binomial distribution.

 
 
 
 
 
 
 
 
Consequence. Number of probes for search/insert is proportional to N / M.

・M too large ⇒ too many empty chains.

・M too small ⇒ chains too long.

・Typical choice: M ~ N / 4 ⇒ constant-time ops.
19

Analysis of separate chaining

M times faster than 
sequential search

equals() and hashCode()

Goal. Average length of list N / M = constant.

・Double size of array M when N / M ≥ 8.

・Halve size of array M when N / M ≤ 2.

・Need to rehash all keys when resizing.

20

Resizing in a separate-chaining hash table

A B C D E F G H I J

K L M N O P

0

1

K I

P N L E
0

1

2

3

before resizing

after resizing

J F C B

O M H G D

A

x.hashCode() does not change

but hash(x) can change

st[]

st[]

Q. How to delete a key (and its associated value)?

A. Easy: need only consider chain containing key.

21

Deletion in a separate-chaining hash table

before deleting C

K I

P N L
0

1

2

3

J F C B

O M

st[] K I

P N L

J F B

O M

after deleting C

0

1

2

3

st[]

Symbol table implementations: summary

22

* under uniform hashing assumption

implementation

guarantee average case
ordered

ops?

key

interface
search insert delete search hit insert delete

sequential search 
(unordered list) N N N ½ N N ½ N equals()

binary search 
(ordered array) lg N N N lg N ½ N ½ N ✔ compareTo()

BST N N N 1.39 lg N 1.39 lg N √ N ✔ compareTo()

red-black BST 2 lg N 2 lg N 2 lg N 1.0 lg N 1.0 lg N 1.0 lg N ✔ compareTo()

separate chaining N N N 3-5 * 3-5 * 3-5 *
equals()

hashCode()

http://algs4.cs.princeton.eduhttp://algs4.cs.princeton.edu

‣ hash functions
‣ separate chaining
‣ linear probing
‣ context

3.4 HASH TABLES

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]  
When a new key collides, find next empty slot, and put it there.

24

Collision resolution: open addressing

null

null

linear probing (M = 30001, N = 15000)

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30000]

st[3]

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear-probing hash table demo

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search
hash(K) = 5

K

K

search miss
(return null)

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Note. Array size M must be greater than number of key-value pairs N.

26

Linear-probing hash table summary

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 private void put(Key key, Value val) { /* next slide */ }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }

}

Linear-probing symbol table: Java implementation

27

array doubling and
halving code omitted

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 private Value get(Key key) { /* previous slide */ }

 public void put(Key key, Value val)
 {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (keys[i].equals(key))
 break;
 keys[i] = key;
 vals[i] = val;
 }

}

Linear-probing symbol table: Java implementation

28

Model. Cars arrive at one-way street with M parking spaces.  
Each desires a random space i : if space i is taken, try i + 1, i + 2, etc. 

Q. What is mean displacement of a car?

Half-full. With M / 2 cars, mean displacement is ∼ 3 / 2.

Full. With M cars, mean displacement is ∼ π M / 8 .

29

Knuth's parking problem

displacement = 3

Proposition. Under uniform hashing assumption, the average # of probes

in a linear probing hash table of size M that contains N = α M keys is:

Pf.

Parameters.

・M too large ⇒ too many empty array entries.

・M too small ⇒ search time blows up.

・Typical choice: α = N / M ~ ½.
30

Analysis of linear probing

search hit search miss / insert

probes for search hit is about 3/2
probes for search miss is about 5/2

Goal. Average length of list N / M ≤ ½.

・Double size of array M when N / M ≥ ½.

・Halve size of array M when N / M ≤ ⅛.

・Need to rehash all keys when resizing.

31

Resizing in a linear-probing hash table

keys[]

0 1 2 3 4 5 6 7

E S R A

1 0 3 2vals[]

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A S E R

2 0 1 3vals[]

after resizing

before resizing

Q. How to delete a key (and its associated value)?

A. Requires some care: can't just delete array entries.

32

Deletion in a linear-probing hash table

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C S H L E R X

10 9 8 4 0 5 11 12 3 7vals[]

before deleting S

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C H L E R X

10 9 8 4 5 11 12 3 7vals[]

after deleting S ?

doesn't work, e.g., if hash(H) = 4

ST implementations: summary

33

* under uniform hashing assumption

implementation

guarantee average case
ordered

ops?

key

interface
search insert delete search hit insert delete

sequential search 
(unordered list) N N N ½ N N ½ N equals()

binary search 
(ordered array) lg N N N lg N ½ N ½ N ✔ compareTo()

BST N N N 1.39 lg N 1.39 lg N √ N ✔ compareTo()

red-black BST 2 lg N 2 lg N 2 lg N 1.0 lg N 1.0 lg N 1.0 lg N ✔ compareTo()

separate chaining N N N 3-5 * 3-5 * 3-5 *
equals()

hashCode()

linear probing N N N 3-5 * 3-5 * 3-5 *
equals()

hashCode()

http://algs4.cs.princeton.eduhttp://algs4.cs.princeton.edu

‣ hash functions
‣ separate chaining
‣ linear probing
‣ context

3.4 HASH TABLES

35

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?

A. Obvious situations: aircraft control, nuclear reactor, pacemaker.

A. Surprising situations: denial-of-service attacks.

 
 
 
 
 
 
 
 
Real-world exploits. [Crosby-Wallach 2003]

・Bro server: send carefully chosen packets to DOS the server, 
using less bandwidth than a dial-up modem.

・Perl 5.8.0: insert carefully chosen strings into associative array.

・Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function 
(e.g., by reading Java API) and causes a big pile-up 

in single slot that grinds performance to a halt

0

1

2

3

st[]

4

5

6

7

Goal. Find family of strings with the same hash code.

Solution. The base-31 hash code is part of Java's string API.

36

Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

37

Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired

value (or two keys that hash to same value).

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160, ….

 
 
 
 
 
 
 
 
 
 
Applications. Digital fingerprint, message digest, storing passwords.

Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

Separate chaining vs. linear probing

Separate chaining.

・Performance degrades gracefully.

・Clustering less sensitive to poorly-designed hash function.

 
Linear probing.

・Less wasted space.

・Better cache performance.

38

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C S H L E R X

10 9 8 4 0 5 11 12 3 7vals[]

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. [separate-chaining variant]

・Hash to two positions, insert key in shorter of the two chains.

・Reduces expected length of the longest chain to log log N.

Double hashing. [linear-probing variant]

・Use linear probing, but skip a variable amount, not just 1 each time.

・Effectively eliminates clustering.

・Can allow table to become nearly full.

・More difficult to implement delete.

Cuckoo hashing. [linear-probing variant]

・Hash key to two positions; insert key into either position; if occupied,

reinsert displaced key into its alternative position (and recur).

・Constant worst-case time for search.
39

