
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

2.1 ELEMENTARY SORTS

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

2.1 ELEMENTARY SORTS

Ex. Student records in a university.

Sort. Rearrange array of N items into ascending order.

3

Sorting problem

item

key

Chen 3 A 991-878-4944 308 Blair

Rohde 2 A 232-343-5555 343 Forbes

Gazsi 4 B 766-093-9873 101 Brown

Furia 1 A 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

4

Sorting applications

playing cards

Library of Congress numbers

Hogwarts houses

contacts

FedEx packages

Goal. Sort any type of data (for which sorting is well defined).

 
A total order is a binary relation ≤ that satisfies:

・Antisymmetry: if both v ≤ w and w ≤ v, then v = w.

・Transitivity: if both v ≤ w and w ≤ x, then v ≤ x.

・Totality: either v ≤ w or w ≤ v or both.

Ex.

・Standard order for natural and real numbers.

・Chronological order for dates or times.

・Alphabetical order for strings.

 
 
No transitivity. Rock-paper-scissors.

No totality. PU course prerequisites.

5

Total order

violates transitivity

COS 126

COS 226 COS 217

COS 423 COS 333

violates totality

6

Callbacks

Goal. Sort any type of data (for which sorting is well defined).

Q. How can sort() know how to compare data of type Double, String, and

java.io.File without any information about the type of an item's key?

Callback = reference to executable code.

・Client passes array of objects to sort() function.

・The sort() function calls object's compareTo() method as needed.

Implementing callbacks.

・Java: interfaces.

・C: function pointers.

・C++: class-type functors.

・C#: delegates.

・Python, Perl, ML, Javascript: first-class functions.

Callbacks: roadmap

7

client

public class StringSorter
{
 public static void main(String[] args)
 {
 String[] a = StdIn.readAllStrings();
 Insertion.sort(a);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
 }
}

sort implementation

key point: no dependence 
on String data type

public static void sort(Comparable[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j].compareTo(a[j-1]) < 0)
 exch(a, j, j-1);
 else break;
}

data-type implementation

public class String
implements Comparable<String>
{
 ...
 public int compareTo(String b)
 {
 ...
 return -1;
 ...
 return +1;
 ...
 return 0;
 }
}

Comparable interface (built in to Java)

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

Implement compareTo() so that v.compareTo(w)

・Defines a total order.

・Returns a negative integer, zero, or positive integer 
if v is less than, equal to, or greater than w, respectively.

・Throws an exception if incompatible types (or either is null).

Built-in comparable types. Integer, Double, String, Date, File, ...

User-defined comparable types. Implement the Comparable interface.
8

Comparable API

greater than (return +1)

v

w

less than (return -1)

v
w

equal to (return 0)

v w

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date> 
{
 private final int month, day, year;

 public Date(int m, int d, int y) 
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date that) 
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

9

Implementing the Comparable interface

only compare dates 
to other dates

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

2.1 ELEMENTARY SORTS

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

11

initial

12

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

・Entries the left of ↑ (including ↑) fixed and in ascending order.

・No entry to right of ↑ is smaller than any entry to the left of ↑.

in final order ↑

Helper functions. Refer to data through compares and exchanges.

Less. Is item v less than w ?

Exchange. Swap item in array a[] at index i with the one at index j.

13

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }

private static void exch(Comparable[] a, int i, int j)
{
 Comparable swap = a[i];
 a[i] = a[j];
 a[j] = swap;
}

14

Selection sort inner loop

To maintain algorithm invariants:

・Move the pointer to the right.

・Identify index of minimum entry on right.

・Exchange into position.

i++;

↑in final order

in final order
exch(a, i, min);

↑↑

int min = i;
for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;

↑↑in final order

15

Selection sort: Java implementation

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;  
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Selection sort: animations

16

http://www.sorting-algorithms.com/selection-sort

20 random items

in final order

not in final order

algorithm position

Selection sort: animations

17

in final order

not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted items

Selection sort: mathematical analysis

Proposition. Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N 2 / 2 compares

and N exchanges.

Running time insensitive to input. Quadratic time, even if input is sorted.

Data movement is minimal. Linear number of exchanges.
18

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

2.1 ELEMENTARY SORTS

・In iteration i, swap a[i] with each larger entry to its left.

Insertion sort demo

20

21

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

・Entries to the left of ↑ (including ↑) are in ascending order.

・Entries to the right of ↑ have not yet been seen.

in order ↑ not yet seen

22

Insertion sort inner loop

To maintain algorithm invariants:

・Move the pointer to the right.

・Moving from right to left, exchange 
a[i] with each larger entry to its left.

i++;

in order not yet seen

↑

for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;

in order not yet seen

↑↑↑↑

Insertion sort: Java implementation

23

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Insertion sort: animation

24

in order

not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random items

Insertion sort: animation

25

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted items

in order

not yet seen

algorithm position

Insertion sort: animation

26

40 partially-sorted items

http://www.sorting-algorithms.com/insertion-sort

in order

not yet seen

algorithm position

Proposition. To sort a randomly-ordered array with distinct keys,  
insertion sort uses ~ ¼ N 2 compares and ~ ¼ N 2 exchanges on average.

Pf. Expect each entry to move halfway back.

Insertion sort: mathematical analysis

27

Trace of insertion sort (array contents just after each insertion)

 a[]
 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E
 2 1 O R S T E X A M P L E
 3 3 O R S T E X A M P L E
 4 0 E O R S T X A M P L E
 5 5 E O R S T X A M P L E
 6 0 A E O R S T X M P L E
 7 2 A E M O R S T X P L E
 8 4 A E M O P R S T X L E
 9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

Insertion sort: trace

28

Best case. If the array is in ascending order, insertion sort makes  
N – 1 compares and 0 exchanges.

 
 
 
 
Worst case. If the array is in descending order (and no duplicates),  
insertion sort makes ~ ½ N 2 compares and ~ ½ N 2 exchanges.

Insertion sort: analysis

29

 X T S R P O M L F E A

 A E E L M O P R S T X

Def. An inversion is a pair of keys that are out of order.

 
 
 
 
 
 
Def. An array is partially sorted if the number of inversions is ≤ c N.

・Ex 1. A sorted array has 0 inversions.

・Ex 2. A subarray of size 10 appended to a sorted subarray of size N.

 
 
Proposition. For partially-sorted arrays, insertion sort runs in linear time.

Pf. Number of exchanges equals the number of inversions.

Insertion sort: partially-sorted arrays

30

 A E E L M O T R X P S

T-R T-P T-S R-P X-P X-S

(6 inversions)

number of compares = exchanges + (N – 1)

Half exchanges. Shift items over (instead of exchanging).

・Eliminates unnecessary data movement.

・No longer uses only less() and exch() to access data.

 
 
 
 
 
 
Binary insertion sort. Use binary search to find insertion point.

・Number of compares ~ N lg N .

・But still a quadratic number of array accesses.

Insertion sort: practical improvements

31

 A C H H I M N N P Q X Y K B I N A R Y

binary search for first key > K

 A C H H I B I N A R YKM N N P Q X Y

