A 1 g Oor 1 th ms ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

2.3 QUICKSORT

» quicksort
» selection
» duplicate keys

» system sorts

Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure.
e Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.
e Quicksort honored as one of top 10 algorithms of 20th century
in science and engineering.

Mergesort. [last lecture]

Quicksort. [this lecture]

S,
< _

15 4 O

Quicksort t-shirt

- 4

gubﬁc static void quicksort(char] items, int left, int right)
inti, j;
charx, y;

i = left; | = right;
x = items|{left + right) / 2];

do

{
while ((itemsi] < x) && (i < right)} i++;
’ while ((x < itemslj]) && (j > left)) j--;
" <=1
{

y = itemsi];
items|i] = itemsj];
itemslj] = y;

i+ 4] jem;

} while (i <= j);

if (left < j) quicksort(items, left, j);
if (i < right) quicksort(items, i, right);

2.3 QUICKSORT

» quicksort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quicksort

Basic plan.
e Shuffle the array.

« Partition so that, for some j

— entry a[j] is in place

— no larger entry to the left of j

— no smaller entry to the right of j
e Sort each subarray recursively.

nput Q U I C K S O R T E X A M P L E

shuffle K AT E L E P UI MAQ C X
partitioning item

partiton E C A I E K L P U T M Q R X 0 S
~ el

not greater not less

sortleft A C E E 1
sort right L
resut A C E E I K L

o O
© T©
o0
A X

Tony Hoare

e Invented quicksort to translate Russian into English.
[but couldn't explain his algorithm or implement it!]

o Learned Algol 60 (and recursion).
« Implemented quicksort.

ALGORITHM 64

QUICKSORT

C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (AM,N); value M,N;
array A; integer M,N;
comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer 1,J;
if M < N then begin partition (A,M,N,1,J);
quicksort (AM,J);
quicksort (A, I, N)
end
end quicksort

Communications of the ACM (July 1961)

Tony Hoare
1980 Turing Award

Tony Hoare

e Invented quicksort to translate Russian into English.
[but couldn't explain his algorithm or implement it!]

o Learned Algol 60 (and recursion).

« Implemented quicksort.

“There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies, and

the other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult. ”

“I call it my billion-dollar mistake. It was the invention of the null
reference in 1965... This has led to innumerable errors,
vulnerabilities, and system crashes, which have probably caused

a billion dollars of pain and damage in the last forty years. ”

Tony Hoare
1980 Turing Award

Bob Sedgewick

« Refined and popularized quicksort.
e Analyzed quicksort.

Bob Sedgewick

Programming S. L. Graham, R. L. Rivest
Techniques Editors

Implementing
QUICkSOI't Programs Acta Informatica 7, 327—355 (1977)

© by Springer-Verlag 1977

Robert Sedgewick
Brown University

The Analysis of Quicksort Programs™®

This paper is a practical study of how to implement :
rt Sedgewick
the Quicksort sorting algorithm and its best variants on R9be &
real computers, including how to apply various code Received January 19, 1976
optimization techniques. A detailed implementation

combining the most effective improvements to Summary. The Quicksort sorting algorithm and its best variants are presented

Quicksort is given, along with a discussion of how to and analyzed. Results are derived which make it possible to obtain exact formulas de-
implement it in assembly language. Analytic results scribing the total expected running time of particular implementations on real com-
describing the performance of the programs are puters of Quicksort and an improvement called the mgdlan-of-three modxﬁcatx?n.
summarized. A variety of special situations are Detailed analysis of the effect of an implementation technique called loop unwrapping

is presented. The paper isintended not only to present results of direct practical utility,
but also to illustrate the intriguing mathematics which arises in the complete analysis
of this important algorithm.

considered from a practical standpoint to illustrate
Quicksort’s wide applicability as an internal sorting
method which requires negligible extra storage.
Key Words and Phrases: Quicksort, analysis of
algorithms, code optimization, sorting
CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

Quicksort partitioning demo

Repeat until i and j pointers cross.
e Scan i from left to right so long as (a[i] < a[lo]).
« Scan j from right to left so long as (a[j] > a[lo]).
« Exchange a[i] with a[j].

When pointers cross.
« Exchange a[l1o] with a[j].

partitioned!

10

Quicksort: Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)

{
int 1 = lo, J = hi+l;
while (true)
{
while (less(al++1], allol)) find item on left to swap
if (i == hi) break;
while (less(al[lo], a[--31)) find item on right to swap
if (j == 10) break;
if (i >= j) break; check if pointers cross
exch(a, i, j); swap
}
exch(a, lo, j); swap with partitioning item
) return J; return index of item now known to be in place
before |v during V| =V | =V after =V |V| =V

f f f f f t t
To hi i j To j hi

11

Quicksort: Java implementation

public class Quick

{
private static int partition(Comparable[] a, int lo, int hi)
{ /* see previous slide */ }
public static void sort(Comparable[] a)
{
StdRandom.shuffle(a);
sort(a, 0, a.length - 1); <
}
private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= 1o) return;
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);
}

shuffle needed for
performance guarantee
(stay tuned)

12

Quicksort trace

1o
initial values

random shuffle

/ :
no partition 7

for subarrays

ofsize] T~ /

10
10
10

o O oo

14

result

O N WU

N O O

13
12
11

14

R N D> U

15
15

15
12
11

15

>r>mMmMmRXLO|IO
NONNNXC|-
m > > > H|N
mH — N jw
Hmm x|

A nju
—mo|o

U U XN

c c —|oo

— H m|wo

== X|O

==
O O OoOC

oo 3 W0n

A CE ETI KL M 0 P Q

Quicksort trace (array contents after each partition)

oo |-

R

~ N XN

< X

n

X X U|w

OCOoOr|&

c O

wn N mu

n n

13

Quicksort animation

50 random items

http://www.sorting-algorithms.com/quick-sort

>

algorithm position
in order
current subarray

not in order

14

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is trickier
than it might seem.

Equal keys. When duplicates are present, it is (counter-intuitively)
better to stop scans on keys equal to the partitioning item's key.

Preserving randomness. Shuffling is needed for performance guarantee.
Equivalent alternative. Pick a random partitioning item in each subarray.

15

Quicksort: empirical analysis (1961)

Running time estimates:
e Algol 60 implementation.
« National-Elliott 405 computer.

Table 1
NUMBER OF ITEMS MERGE SORT QUICKSORT
500 2min 8sec - 1 min 21 sec
1,000 | 4 min 48 sec ‘ 3 min & sec
1.500 . 8 min 15sec*™ | 5 min 6 sec
2,000 Il min O sec* \ 6 min 47 sec
i |

* These figures were computed by formula, since they cannot
be achieved on the 405 owing to limited store size.

\

Elliott 405 magnetic disc

sorting N 6-word items with 1-word keys
(16K words)

16

Quicksort: empirical analysis

Running time estimates:
« Home PC executes 108 compares/second.
Supercomputer executes 1012 compares/second.

insertion sort (N2) mergesort (N log N) quicksort (N log N)

home instant 2.8 hours ys;]a:s instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

17

Quicksort: best-case analysis

Best case. Number of compares is ~Nlg M.

lo j hi O 1 2 3 4 5 6 7 8 9 10 11 12 13 14
initial values H A CBF E GDUL I K J NMDO
randomshuffle H A C B F E G D L I K J N M O
0o 7 14 D A CB F E GH L I K J NMDO
0O 3 6 B A CD F E G
0 1 A B C
A
C
4 5 6 E F G
E
G
8§ 11 14 J I K L NMO
8 9 10 I J K
I
K
12 13 14 M N O
M
)
A B CDUEFGH I J KL MNDO

18

IS

worst-case analysi

Quicksort

Worst case. Number of compares is ~ % N2.

al]

6 7 8 9 10 11 12 13 14

G

G

G
F G H

5
F
F
F

4

A B C D E
A B C D E

14 A B C D E

hi
14
14
14
14
14
14
14
14
14
14
14
14
14

initial values

lo

K L M N O

J
J
J
J
J
J
J
J
J
J
J
J

H
H
H

K L M N O

random shuffle

K L M N O

0

0

K L M N O

B C D E

K L M N O

E F G H

D

K L M N O

K L M N O

K L M N O

K L M N O

K L M N O

K L M N O

K L M N O

L M N O
L M N O

K

10
11

10
11
12
13

© O O

Zz Z

12
13

J K L M N O

H

G

F

A B C D E

19

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~2N In N (and the number of exchanges is ~% NIn N).

Pf. C, satisfies the recurrence C,=C, =0 and for N > 2:

partitioning left right
i Cot C ; é Crn_1+C
+ON-1 1 T ON—2 N-1 1+ Cp
~ N 1 O o o o
- (+)+< N)+(N >+ +(N)
e Multiply both sides by N and collect terms: partitioning probability

NCy = N(N—I—l) + 2(00 + C7 + ... —|—CN_1)

* Subtract from this equation the same equation for N - 1:

NCn — (N—l)CN_l = 2N + 2CpN_4

« Rearrange terms and divide by N (N + 1):
Cn Cn_1 i 2

N +1 N N +1

20

Quicksort: average-case analysis

« Repeatedly apply above equation:

C’N L CN—l 2
N+1_ N N +1
Cn_ 2 2
/: =2 —|— — —|— <
. . N —1 N N+1
previous equation
_ Onvs 2 2 2
~ N-2 N-1 N N+1
_ 2,2 2 L2
3 4 5 N +1
« Approximate sum by an integral:
1 1 1 1
C = 2(IN+1)|(=-+-F+=-+...———
N (+)(3+4+5+]V+J
N+1 1
~ 2(N + 1)/ —dx
3 xr

e Finally, the desired result:

Cny ~2(N+1)InN = 1.39NlIgN

21

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~2N In N (and the number of exchanges is ~ % N In N).

Pf 2. Consider BST representation of keys 1 to N.

shuffle

9 10 2 5 8 / 6 1 1112 13 3 4

first partitioning

: e item
first partitioning \
item in
left subarray \

22

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~2N In N (and the number of exchanges is ~ % N In N).

Pf 2. Consider BST representation of keys 1 to N.

« A key is compared only with its ancestors and descendants.
* Probability i and j are compared equals 2/|j - i+ 1]. \

3 and 6 are compared
(when 3 is partition)

1 and 6 are not compared
(because 3 is partition)

first partitioning

: e item
first partitioning \
item in
left subarray \

23

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~2N In N (and the number of exchanges is ~ % N In N).

Pf 2. Consider BST representation of keys 1 to N.

« A key is compared only with its ancestors and descendants.
* Probability i and j are compared equals 2/|j - i+ 1].

N N
2 1
« Expected number of compares = = 2 -
1=1 j=141 =1 g=2
/ g
all pairs i and j B — J
j:
N
~ 2N — dx
rz=1 T

24

Quicksort: summary of performance characteristics

Quicksort is a (Las Vegas) randomized algorithm.
e Guaranteed to be correct.
e Running time depends on random shuffle.

Average case. Expected number of compares is ~1.39 Nlg N.
 39% more compares than mergesort.
e Faster than mergesort in practice because of less data movement.

Best case. Number of compares is ~ Nlg N.
Worst case. Number of compares is ~ 4 N2.
[but more likely that lightning bolt strikes computer during execution]

25

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.
Pf.
e Partitioning: constant extra space.

« Depth of recursion: logarithmic extra space (with high probability).

N

can guarantee logarithmic depth by recurring
on smaller subarray before larger subarray
(requires using an explicit stack)

Proposition. Quicksort is not stable.
Pf. [by counterexample]

B C Cz Al

26

2.3 QUICKSORT

Algo rithms » duplicate keys

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

e Sort population by age.
« Remove duplicates from mailing list.
« Sort job applicants by college attended.

Typical characteristics of such applications.
 Huge array.
o Small number of key values.

Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Chicago
Houston
Houston
Phoenix
Phoenix
Phoenix
Seattle
Seattle
Seattle
Seattle
Seattle

|

key

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

25:
03:
21:
19:
19:
00:
35:
00:
01:
00:
144
00:
125
10:
36:
143
10:
22:

37

14

22

52
13
05
46
32
00
21
59
10
13

03

25
14

11
54

28

Duplicate keys

Quicksort with duplicate keys. Algorithm can go quadratic unless
partitioning stops on equal keys!

STOPONEQUALKEYS

T [

swap if we don't stop if we stop on
on equal keys equal keys

Caveat emptor. Some textbook (and commercial) implementations
go quadratic when many duplicate keys.

29

What is the result of partitioning the following array?

A A
A A
A A

30

Partitioning an array with all equal keys

al]
7 8 9 10 11 12 13 14 15

N N O o0 vt A DWW NN R

15
15
14
14
13
13
12
12
11
11

10

o o0 W O

4 5 6
AAA A A A A AAAAAAAA
A
A

> > > |-

A A
AAAAAAAAAAAAAAAAA

31

Duplicate keys: the problem

Recommended. Stop scans on items equal to the partitioning item.
Consequence. ~Nlg N compares when all keys equal.

BAABABCCBUCHEB AAAAAAAAAAA

Mistake. Don't stop scans on items equal to the partitioning item.
Consequence. ~ % N2 compares when all keys equal.

BAABABBBCCC AAAAAAAAAAA

Desirable. Put all items equal to the partitioning item in place.

AAABBBBBCCC AAAAAAAAAAA

32

Sorting summary

inplace? | stable? best average worst remarks
v

selection 5 N 2 5 N 2 1A N2 N exchanges
insertion v v N l4a N2 Y5 N2 Hse f.or small ¥
or partially ordered
hell v R i tight code;
she Nlogs N : cN subquadratic
1 tee;
merge v BNIgN NIgN NIgN Nlog Izti‘;ian ee

improves mergesort

timsort v N NlgN NlgN when preexisting order

N log N probabilistic guarantee;

quick v NIlgN 2NInN % N? . :
fastest in practice

improves quicksort

. i 14 N2
3-way quick 4 N 2NInN 2N when duplicate keys

v v N Nlg N NlgN holy sorting grail

System sort in Java 7

Arrays.sort().
« Has method for objects that are ComparabTe. (
« Has overloaded method for each primitive type.
P yp () Java

« Has overloaded method for use with a Comparator.
« Has overloaded methods for sorting subarrays.

Algorithms.

« Dual-pivot quicksort for primitive types.
« Timsort for reference types.

Q. Why use different algorithms for primitive and reference types?

34

