
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

4.1 UNDIRECTED GRAPHS

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

4.1 UNDIRECTED GRAPHS

Graph. Set of vertices connected pairwise by edges. 

Why study graph algorithms?

・Thousands of practical applications.

・Hundreds of graph algorithms known.

・Interesting and broadly useful abstraction.

・Challenging branch of computer science and discrete math.

3

Undirected graphs

4

Border graph of 48 contiguous United States

5

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

6

Map of science clickstreams

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

7

Kevin's facebook friends (Princeton network, circa 2005)

8

10 million Facebook friends

"Visualizing Friendships" by Paul Butler

9

The evolution of FCC lobbying coalitions

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

10

Framingham heart study

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

The Spread of Obesity in a Large Social Network Over 32 Years

n engl j med 357;4 www.nejm.org july 26, 2007 373

educational level; the ego’s obesity status at the
previous time point (t); and most pertinent, the
alter’s obesity status at times t and t + 1.25 We
used generalized estimating equations to account
for multiple observations of the same ego across
examinations and across ego–alter pairs.26 We
assumed an independent working correlation
structure for the clusters.26,27

The use of a time-lagged dependent variable
(lagged to the previous examination) eliminated
serial correlation in the errors (evaluated with a
Lagrange multiplier test28) and also substantial-
ly controlled for the ego’s genetic endowment and
any intrinsic, stable predisposition to obesity. The
use of a lagged independent variable for an alter’s
weight status controlled for homophily.25 The
key variable of interest was an alter’s obesity at
time t + 1. A significant coefficient for this vari-
able would suggest either that an alter’s weight
affected an ego’s weight or that an ego and an
alter experienced contemporaneous events affect-

ing both their weights. We estimated these mod-
els in varied ego–alter pair types.

To evaluate the possibility that omitted vari-
ables or unobserved events might explain the as-
sociations, we examined how the type or direc-
tion of the social relationship between the ego
and the alter affected the association between the
ego’s obesity and the alter’s obesity. For example,
if unobserved factors drove the association be-
tween the ego’s obesity and the alter’s obesity,
then the directionality of friendship should not
have been relevant.

We evaluated the role of a possible spread in
smoking-cessation behavior as a contributor to
the spread of obesity by adding variables for the
smoking status of egos and alters at times t and
t + 1 to the foregoing models. We also analyzed
the role of geographic distance between egos
and alters by adding such a variable.

We calculated 95% confidence intervals by sim-
ulating the first difference in the alter’s contem-

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, ≥30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

11

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

12

Graph applications

graph vertex edge

communication telephone, computer fiber optic cable

circuit gate, register, processor wire

mechanical joint rod, beam, spring

financial stock, currency transactions

transportation intersection street

internet class C network connection

game board position legal move

social relationship person friendship

neural network neuron synapse

protein network protein protein-protein interaction

molecule atom bond

13

Graph terminology

Path. Sequence of vertices connected by edges.

Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

Anatomy of a graph

cycle of
length 5

vertex

vertex of
degree 3

edge

path of
length 4

connected
components

14

Some graph-processing problems

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Challenge. Which graph problems are easy? difficult? intractable?

problem description

s-t path Is there a path between s and t ?

shortest s-t path What is the shortest path between s and t ?

cycle Is there a cycle in the graph ?

Euler cycle Is there a cycle that uses each edge exactly once ?

Hamilton cycle Is there a cycle that uses each vertex exactly once ?

connectivity Is there a way to connect all of the vertices ?

biconnectivity Is there a vertex whose removal disconnects the graph ?

planarity Can the graph be drawn in the plane with no crossing edges ?

graph isomorphism Do two adjacency lists represent the same graph ?

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

4.1 UNDIRECTED GRAPHS

Graph drawing. Provides intuition about the structure of the graph. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Caveat. Intuition can be misleading.
16

Graph representation

Two drawings of the same graph

Two drawings of the same graphtwo drawings of the same graph

Vertex representation.

・This lecture: use integers between 0 and V – 1.

・Applications: convert between names and integers with symbol table.

 
 
 
 
 
 
 
 
 
 
 
Anomalies.

A

G

E

CB

F

D

17

Graph representation

symbol table

0

6

4

21

5

3

Anomalies

parallel
edges

self-loop

18

Graph API

 public class Graph

Graph(int V) create an empty graph with V vertices

Graph(In in) create a graph from input stream

void addEdge(int v, int w) add an edge v-w

Iterable<Integer> adj(int v) vertices adjacent to v

int V() number of vertices

int E() number of edges

// degree of vertex v in graph G
public static int degree(Graph G, int v)
{
 int degree = 0;
 for (int w : G.adj(v))
 degree++;
 return degree;
}

19

Graph input format.

Graph API: sample client

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
⋮
12-11
12-9

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
 for (int w : G.adj(v))
 StdOut.println(v + "-" + w);

read graph from
input stream

print out each
edge (twice)

Maintain a list of the edges (linked list or array).

 
 
 
 
 
 
 
 

 
 
 
 
 
Q. How long to iterate over vertices adjacent to v ?

20

Graph representation: set of edges

 0 1
 0 2
 0 5
 0 6
 3 4
 3 5
 4 5
 4 6
 7 8
 9 10
 9 11
 9 12
11 12

87

109

1211

0

6

4

21

5

3

Maintain a two-dimensional V-by-V boolean array;  
for each edge v–w in graph: adj[v][w] = adj[w][v] = true.

 
 
 
 
 
 
 

 
 
 
 
 
Q. How long to iterate over vertices adjacent to v ?

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1 1 0 0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 1 1 0 0 0 0 0 0 0
4 0 0 0 1 0 1 1 0 0 0 0 0 0
5 1 0 0 1 1 0 0 0 0 0 0 0 0
6 1 0 0 0 1 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 1 1
10 0 0 0 0 0 0 0 0 0 1 0 0 0
11 0 0 0 0 0 0 0 0 0 1 0 0 1
12 0 0 0 0 0 0 0 0 0 1 0 1 0

21

Graph representation: adjacency matrix

two entries
for each edge

87

109

1211

0

6

4

21

5

3

Maintain vertex-indexed array of lists.

 
 
 
 
 
 
 
 

 
 
 
 
 
Q. How long to iterate over vertices adjacent to v ?

22

Graph representation: adjacency lists

adj[]
0

1

2

3

4

5

6

7

8

9

10

11

12

5 4

0 4

9 12

11 9

0

0

8

7

9

5 6 3

3 4 0

11 10 12

6 2 1 5

Adjacency-lists representation (undirected graph)

Bag objects

representations
of the same edge

87

109

1211

0

6

4

21

5

3

In practice. Use adjacency-lists representation.

・Algorithms based on iterating over vertices adjacent to v.

・Real-world graphs tend to be sparse.

23

Graph representations

huge number of vertices, 
small average vertex degree

sparse (E = 200) dense (E = 1000)

Two graphs (V = 50)

In practice. Use adjacency-lists representation.

・Algorithms based on iterating over vertices adjacent to v.

・Real-world graphs tend to be sparse.

24

Graph representations

representation space add edge edge between
v and w?

iterate over vertices
adjacent to v?

list of edges E 1 E E

adjacency matrix V 2 1 * 1 V

adjacency lists E + V 1 degree(v) degree(v)

* disallows parallel edges

huge number of vertices, 
small average vertex degree

25

Adjacency-list graph representation: Java implementation

public class Graph
{
 private final int V;
 private Bag<Integer>[] adj;

 public Graph(int V)
 {
 this.V = V;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<Integer>();
 }

 public void addEdge(int v, int w)
 {
 adj[v].add(w);
 adj[w].add(v);
 }

 public Iterable<Integer> adj(int v)
 { return adj[v]; }
}

adjacency lists
(using Bag data type)

create empty graph 
with V vertices

add edge v-w 
(parallel edges and 
self-loops allowed)

iterator for vertices adjacent to v

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

4.1 UNDIRECTED GRAPHS

27

Maze exploration

Maze graph.

・Vertex = intersection.

・Edge = passage.

Goal. Explore every intersection in the maze.

intersection passage

Algorithm.

・Unroll a ball of string behind you.

・Mark each visited intersection and each visited passage.

・Retrace steps when no unvisited options.

28

Trémaux maze exploration

Tremaux exploration

29

Trémaux maze exploration

Algorithm.

・Unroll a ball of string behind you.

・Mark each visited intersection and each visited passage.

・Retrace steps when no unvisited options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur; 
Ariadne instructed Theseus to use a ball of string to find his way back out.

Claude Shannon (with Theseus mouse)The Labyrinth (with Minotaur)

30

Maze exploration: easy

31

Maze exploration: medium

32

Maze exploration: challenge for the bored

Goal. Systematically traverse a graph. 
Idea. Mimic maze exploration.

 
 
 
 
 
 
 
 
Typical applications.

・Find all vertices connected to a given source vertex.

・Find a path between two vertices.

 
 
Design challenge. How to implement?

Depth-first search

Mark v as visited.
Recursively visit all unmarked
 vertices w adjacent to v.

DFS (to visit a vertex v)

function-call stack acts as ball of string

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Depth-first search demo

34

graph G

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

0

4

5

621

3

Depth-first search demo

35

vertices reachable from 0

87

109

1211

87

109

1211

0
1

2
3

4

5
6

7

8
9

10
11

12

v marked[]

T
T

T
T

T

T
T

F

F
F

F
F

F

edgeTo[]

–
0

0
5

6

4
0

–

–
–

–
–

–

36

Design pattern. Decouple graph data type from graph processing.

・Create a Graph object.

・Pass the Graph to a graph-processing routine.

・Query the graph-processing routine for information.

Design pattern for graph processing

 Paths paths = new Paths(G, s);
 for (int v = 0; v < G.V(); v++)
 if (paths.hasPathTo(v))
 StdOut.println(v);

print all vertices 
connected to s

 public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

 
Data structures.

・Boolean array marked[] to mark visited vertices.

・Integer array edgeTo[] to keep track of paths. 
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

・ Function-call stack for recursion.

Depth-first search: data structures

38

Depth-first search: Java implementation

public class DepthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private int s;

 public DepthFirstPaths(Graph G, int s)
 {
 ...
 dfs(G, s);
 }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 {
 dfs(G, w);
 edgeTo[w] = v;
 }
 }
}

marked[v] = true
if v connected to s

find vertices connected to s

recursive DFS does the work

edgeTo[v] = previous
vertex on path from s to v

initialize data structures

Depth-first search: properties

Proposition. DFS marks all vertices connected to s in time proportional to  
the sum of their degrees (plus time to initialize the marked[] array).  

Pf. [correctness]

・If w marked, then w connected to s (why?)

・If w connected to s, then w marked. 
(if w unmarked, then consider last edge 
on a path from s to w that goes from a 
marked vertex to an unmarked one). 

Pf. [running time]  
Each vertex connected to s is visited once.

39

set of
unmarked

vertices

no such edge
can exist

source

v

s

set of marked
vertices

w

x

Proposition. After DFS, can check if vertex v is connected to s in constant

time and can find v–s path (if one exists) in time proportional to its length. 

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

40

Depth-first search: properties

 public boolean hasPathTo(int v)
 { return marked[v]; }

 public Iterable<Integer> pathTo(int v)
 {
 if (!hasPathTo(v)) return null;
 Stack<Integer> path = new Stack<Integer>();
 for (int x = v; x != s; x = edgeTo[x])
 path.push(x);
 path.push(s);
 return path;
 }

Trace of pathTo() computation

edgeTo[]
 0
 1 2
 2 0
 3 2
 4 3
 5 3

5 5
3 3 5
2 2 3 5
0 0 2 3 5

x path

Challenge. Flood fill (Photoshop magic wand).  
Assumptions. Picture has millions to billions of pixels.

 
 
 
 
 
 
 
 
 
Solution. Build a grid graph (implicitly).

・Vertex: pixel.

・Edge: between two adjacent gray pixels.

・Blob: all pixels connected to given pixel.

Depth-first search application: flood fill

41

Depth-first search application: preparing for a date

42

http://xkcd.com/761/

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

4.1 UNDIRECTED GRAPHS

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

44

graph G

0

4

2

1

5

3

adj[]
0

1

2

3

4

5

2 1 5

0 2

5 4 2

3 2

3 0

0 1 3 4

6
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

tinyCG.txt standard drawing

drawing with both edges

adjacency lists

A connected undirected graph

V
E

0

4

2

1

5

3

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

Breadth-first search demo

45

done

0

4

2

1

5

3

0
1

2

3
4

5

v edgeTo[]

–
0

0

2
2

0

distTo[]

0
1

1

2
2

1

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices adjacent to v and mark them.

46

Breadth-first search

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
 - remove the least recently added vertex v
 - add each of v's unvisited neighbors to the queue,  
 and mark them as visited.

BFS (from source vertex s)

Breadth-first
maze exploration

47

Breadth-first search: Java implementation

public class BreadthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private int[] distTo;

 …

 private void bfs(Graph G, int s) {
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 marked[s] = true;
 distTo[s] = 0;

 while (!q.isEmpty()) {
 int v = q.dequeue();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 q.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 distTo[w] = distTo[v] + 1;
 }
 }
 }
 }
}

initialize FIFO queue of
vertices to explore

found new vertex w
via edge v-w

Q. In which order does BFS examine vertices?

A. Increasing distance (number of edges) from s.
 
 
 
 
Proposition. In any connected graph G, BFS computes shortest paths 
from s to all other vertices in time proportional to E + V.

Breadth-first search properties

48

0

4

2

1

5
3

graph G

4

3

dist = 2dist = 1

2

1

5

0

dist = 0

s

queue always consists of ≥ 0 vertices of distance k from s,
followed by ≥ 0 vertices of distance k+1

49

Breadth-first search application: routing

Fewest number of hops in a communication network.

ARPANET, July 1977

50

Breadth-first search application: Kevin Bacon numbers

http://oracleofbacon.org SixDegrees iPhone App

Endless Games board game

51

Kevin Bacon graph

・Include one vertex for each performer and one for each movie.

・Connect a movie to all performers that appear in that movie.

・Compute shortest path from s = Kevin Bacon.

Kevin
Bacon

Kathleen
Quinlan

Meryl
Streep

Nicole
Kidman

John
Gielgud

Kate
Winslet

Bill
Paxton

Donald
Sutherland

The Stepford
Wives

Portrait
of a Lady

Dial M
for Murder

Apollo 13

To Catch
a Thief

The Eagle
Has Landed

Cold
Mountain

Murder on the
Orient Express

Vernon
Dobtcheff

An American
Haunting

Jude

Enigma

Eternal Sunshine
of the Spotless

Mind

The
Woodsman

Wild
Things

Hamlet

Titanic

Animal
House

Grace
KellyCaligola

The River
Wild

Lloyd
Bridges

High
Noon

The Da
Vinci Code

Joe Versus
the Volcano

Patrick
Allen

Tom
Hanks

Serretta
Wilson

Glenn
Close

John
Belushi

Yves
Aubert Shane

Zaza

Paul
Herbert

performer
vertex

movie
vertex

Symbol graph example (adjacency lists)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara...
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/.../Winslet, Kate/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/.../Bancroft, Anne/...
To Catch a Thief (1955)/París, Manuel/.../Grant, Cary/.../Kelly, Grace/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/.../ Tucci, Maria...
...

movies.txt

V and E
not explicitly

specified

"/"
delimiter

52

Breadth-first search application: Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ graph API

‣ depth-first search

‣ breadth-first search

‣ connected components

‣ challenges

4.1 UNDIRECTED GRAPHS

Def. Vertices v and w are connected if there is a path between them.

 
Goal. Preprocess graph to answer queries of the form is v connected to w?  
in constant time.

 
 
 
 
 
 
 
 
 
 
Union-Find? Not quite. 
Depth-first search. Yes. [next few slides]

54

Connectivity queries

 public class CC

CC(Graph G) find connected components in G

boolean connected(int v, int w) are v and w connected?

int count() number of connected components

int id(int v)
component identifier for v

(between 0 and count() - 1)  

The relation "is connected to" is an equivalence relation:

・Reflexive: v is connected to v.

・Symmetric: if v is connected to w, then w is connected to v.

・Transitive: if v connected to w and w connected to x, then v connected to x. 

Def. A connected component is a maximal set of connected vertices.

 
 
 
 
 
 
 
 
 
Remark. Given connected components, can answer queries in constant time.

55

Connected components

87

109

1211

0

6

4

21

5

3

 v id[]
 0 0 
 1 0
 2 0 
 3 0
 4 0 
 5 0
 6 0 
 7 1
 8 1
 9 2
 10 2
 11 2
 12 2

3 connected components

Def. A connected component is a maximal set of connected vertices.

56

Connected components

63 connected components

Goal. Partition vertices into connected components.

57

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

Connected components

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

13
13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3

tinyG.txt

Input format for Graph constructor (two examples)

250
1273
244 246
239 240
238 245
235 238
233 240
232 248
231 248
229 249
228 241
226 231
...
(1261 additional lines)

mediumG.txt
V

E
V

E

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

87

109

1211

0

6

4

21

5

3

Connected components demo

58

graph G

0
1

2
3

4

5
6

7

8
9

10
11

12

marked[]v

F
F

F
F

F

F
F

F

F
F

F
F

F

87

109

1211

0

6

4

21

5

3

87

109

1211

0

6

4

21

5

3

–
–

–
–

–

–
–

–

–
–

–
–

–

id[]

To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices adjacent to v.

70

4

5

621

3

Connected components demo

59

done

8

11 12

109

0
0

0
0

0

0
0

1

1
2

2
2

2

0
1

2
3

4

5
6

7

8
9

10
11

12

marked[]v

T
T

T
T

T

T
T

T

T
T

T
T

T

id[]

60

Finding connected components with DFS

public class CC
{
 private boolean[] marked;
 private int[] id;
 private int count;

 public CC(Graph G)
 {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 for (int v = 0; v < G.V(); v++)
 {
 if (!marked[v])
 {
 dfs(G, v);
 count++;
 }
 }
 }

 public int count()
 public int id(int v)
 public boolean connected(int v, int w)
 private void dfs(Graph G, int v)
}

run DFS from one vertex in
each component

id[v] = id of component containing v

number of components

see next slide

61

Finding connected components with DFS (continued)

 public int count()
 { return count; }

 public int id(int v)
 { return id[v]; }

 public boolean connected(int v, int w)
 { return id[v] == id[w]; }

 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 id[v] = count;
 for (int w : G.adj(v))
 if (!marked[w])
 dfs(G, w);
 }

all vertices discovered in
same call of dfs have same id

number of components

id of component containing v

v and w connected iff same id

62

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

・Vertex: pixel.

・Edge: between two adjacent pixels with grayscale value ≥ 70.

・Blob: connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.

black = 0 
white = 255

63

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

problem BFS DFS time

path between s and t ✔ ✔ E + V

shortest path between s and t ✔ E + V

connected components ✔ ✔ E + V

biconnected components ✔ E + V

cycle ✔ ✔ E + V

Euler cycle ✔ E + V

Hamilton cycle

bipartiteness ✔ ✔ E + V

planarity ✔ E + V

graph isomorphism 2 c
�

V log V

2 1.657 V

