

Robert Sedgewick I Kevin Wayne

http://algs4.cs.princeton.edu

4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

4.1 Undirected Graphs

- introduction
- graph APL

Algorithms

Robert Sedgewick | Kevin Wayne
http://algs4.cs.princeton.edu

- depth-first search
- breadth-first search
- connected compónent's
, challenges

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.

Border graph of 48 contiguous United States

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

Map of science clickstreams

Kevin's facebook friends (Princeton network, circa 2005)

10 million Facebook friends

"Visualizing Friendships" by Paul Butler

The evolution of FCC lobbying coalitions

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000. Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is proportional to the person's body-mass index. The interior color of the circles indicates the person's obesity status: yellow denotes an obese person (body-mass index, ≥ 30) and green denotes a nonobese person. The colors of the ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange denotes a familial tie.

The Internet as mapped by the Opte Project

Graph applications

graph	vertex	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	intersection	street
internet	class C network	connection
game	board position	legal move
social relationship	neuron	friendship
neural network	protein	synapse
protein network	atom	protein-protein interaction
molecule		

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

Some graph-processing problems

problem	description
s-t path	Is there a path between s and t ?
shortest s-t path	What is the shortest path between s and t ?
cycle	Is there a cycle in the graph?
Euler cycle	Is there a cycle that uses each edge exactly once ?
Hamilton cycle	Is there a cycle that uses each vertex exactly once ?
connectivity	Is there a way to connect all of the vertices?
biconnectivity	Is there a vertex whose removal disconnects the graph ?
planarity	Can the graph be drawn in the plane with no crossing edges ?
graph isomorphism	Do two adjacency lists represent the same graph ?

Challenge. Which graph problems are easy? difficult? intractable?

4.1 Undirected Graphs

- introduction

- graph API

Algorithms

Robert Sedgewick | Kevin Wayne
http://algs4.cs.princeton.edu

- depth-first search
- breadth-first search
- connected compoinent's
, challeriges

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

two drawings of the same graph

Caveat. Intuition can be misleading.

Graph representation

Vertex representation.

- This lecture: use integers between 0 and V - 1 .
- Applications: convert between names and integers with symbol table.

Anomalies.

Graph API

Graph API: sample client

Graph input format.
\% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
:
12-11
12-9
In in = new In(args[0]);
In in = new In(args[0]);
Graph G = new Graph(in);
Graph G = new Graph(in);
for (int v = 0; v < G.V(); v++)
for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
for (int w : G.adj(v))
StdOut.println(v + "-" + w);
StdOut.println(v + "-" + w);

Graph representation: set of edges

Maintain a list of the edges (linked list or array).

0	1
0	2
0	5
0	6
3	4
3	5
4	5
4	6
7	8
9	10
9	11
9	12
11	12

Q. How long to iterate over vertices adjacent to v ?

Graph representation: adjacency matrix

Maintain a two-dimensional V-by- V boolean array; for each edge $v-w$ in graph: $\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=$ true.

Q. How long to iterate over vertices adjacent to v ?

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.

Q. How long to iterate over vertices adjacent to v ?

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.
huge number of vertices, small average vertex degree
sparse $(E=200)$

$$
\text { dense }(E=1000)
$$

Two graphs ($\mathrm{V}=50$)

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse.
huge number of vertices, small average vertex degree

representation	space	add edge	edge between v and w?	iterate over vertices adjacent to v?
list of edges	E	1	E	E
adjacency matrix	V^{2}	$1 *$	1	V
adjacency lists	$E+V$	1	$\operatorname{degree}(v)$	degree (v)

* disallows parallel edges

Adjacency-list graph representation: Java implementation

```
public class Graph
{
    private final int V;
    private Bag<Integer>[] adj;
    public Graph(int V)
    {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }
    public void addEdge(int v, int w)
    {
        adj[v].add(w);
        adj[w].add(v);
    }
    public Iterable<Integer> adj(int v)
    { return adj[v]; }
}
```


4.1 Undirected Graphs

- introduction

- graph API

Algorithms

Robert Sedgewick | Kevin Wayne
http://algs4.cs.princeton.edu

- depth-first search
- breadth-first search
- connected compoinents
, challenges

Maze exploration

Maze graph.

- Vertex = intersection.
- Edge = passage.

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur; Ariadne instructed Theseus to use a ball of string to find his way back out.

The Labyrinth (with Minotaur)

Claude Shannon (with Theseus mouse)

Maze exploration: easy

Maze exploration: medium

Depth-first search

Goal. Systematically traverse a graph.
Idea. Mimic maze exploration. \longleftarrow function-call stack acts as ball of string

DFS (to visit a vertex v)
Mark vas visited.
Recursively visit all unmarked vertices \mathbf{w} adjacent to \mathbf{v}.

Typical applications.

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

Design challenge. How to implement?

Depth-first search demo

To visit a vertex v :

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

$V \xrightarrow[-12]{\text { tinyG.txt }}$
05
43
01
912
64
54
02
1112
910
06
78
911
53

graph G

Depth-first search demo

To visit a vertex v :

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

\mathbf{v}	marked[]	edgeTo[]
0	T	-
1	T	0
2	T	0
3	T	5
4	T	6
5	T	4
6	T	0
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

vertices reachable from 0

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

- Create a Graph object.
- Pass the Graph to a graph-processing routine.
- Query the graph-processing routine for information.

```
public class Paths
```

| \qquad | Paths(Graph G, int s) |
| :---: | :---: |\quad find paths in G from source s

```
Paths paths = new Paths(G, s);
for (int v = 0; v < G.V(); v++)
    if (paths.hasPathTo(v))
        StdOut.print7n(v);
```


Depth-first search: data structures

To visit a vertex v :

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

Data structures.

- Boolean array marked[] to mark visited vertices.
- Integer array edgeTo[] to keep track of paths. (edgeTo [w] == v) means that edge v-w taken to visit w for first time
- Function-call stack for recursion.

Depth-first search: Java implementation

```
public class DepthFirstPaths
{
    private boolean[] marked;
    private int[] edgeTo;
    private int s;
    public DepthFirstPaths(Graph G, int s)
    {
        dfs(G, s);
    }
    private void dfs(Graph G, int v)
    {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
            {
                dfs(G, w);
                edgeTo[w] = v;
            }
    }
}
```


Depth-first search: properties

Proposition. DFS marks all vertices connected to s in time proportional to the sum of their degrees (plus time to initialize the marked[] array).

Pf. [correctness]

- If w marked, then w connected to s (why?)
- If w connected to s, then w marked. (if w unmarked, then consider last edge on a path from s to w that goes from a marked vertex to an unmarked one).

Pf. [running time]

Each vertex connected to s is visited once.

Depth-first search: properties

Proposition. After DFS, can check if vertex v is connected to s in constant time and can find $v-s$ path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

```
public boolean hasPathTo(int v)
{ return marked[v]; }
public Iterable<Integer> pathTo(int v)
{
    if (!hasPathTo(v)) return nul1;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
        path.push(x);
        path.push(s);
        return path;
}
```


edgeTo []
0
1 $| 2$

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

Solution. Build a grid graph (implicitly).

- Vertex: pixel.
- Edge: between two adjacent gray pixels.
- Blob: all pixels connected to given pixel.

Depth-first search application: preparing for a date

http://xkcd.com/761/

I REAUY NEED TO STOP USING DEPTH-FRST SEARCHES.

4.1 Undirected Graphs

- introduction

- graph API

Algorithms

Robert Sedgewick | Kevin Wayne
http://algs4.cs.princeton.edu

- breadth-first search
- connected compónent's
challeriges

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

tinyCG.txt

graph G

Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

\mathbf{v}	edgeTo[]	distTo[]
0	-	0
1	0	1
2	0	1
3	2	2
4	2	2
5	0	1

done

Breadth-first search

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

BFS (from source vertex s)
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue,
 and mark them as visited.

Breadth-first search: Java implementation

```
public class BreadthFirstPaths
{
    private boolean[] marked;
    private int[] edgeTo;
    private int[] distTo;
    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        q.enqueue(s);
        marked[s] = true;
        distTo[s] = 0;
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                        q.enqueue(w);
                marked[w] = true;
                edgeTo[w] = v;
                distTo[w] = distTo[v] + 1;
            }
            }
        }
    }
}
```


Breadth-first search properties

Q. In which order does BFS examine vertices?
A. Increasing distance (number of edges) from s.
queue always consists of ≥ 0 vertices of distance k from s,
followed by ≥ 0 vertices of distance $k+1$

Proposition. In any connected graph G, BFS computes shortest paths from s to all other vertices in time proportional to $E+V$.

graph G

Breadth-first search application: routing

Fewest number of hops in a communication network.

ARPANET, July 1977

Breadth-first search application: Kevin Bacon numbers

Endless Games board game

http://oracleofbacon.org

Kevin Bacon graph

- Include one vertex for each performer and one for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from $s=$ Kevin Bacon.

Breadth-first search application: Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham

4.1 Undirected Graphs

Algorithms

Robert Sedgewick | Kevin Wayne
http://algs4.cs.princeton.edu

- introduction
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries of the form is v connected to w ? in constant time.

public class CC	
CC(Graph G)	find connected components in G
boolean connected(int v, int w)	are v and w connected?
int count $)$	number of connected components
int id(int v)	component identifier for v (between 0 and count ()$-1)$

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

Connected components

The relation "is connected to" is an equivalence relation:

- Reflexive: v is connected to v.
- Symmetric: if v is connected to w, then w is connected to v.
- Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

Remark. Given connected components, can answer queries in constant time.

Connected components

Def. A connected component is a maximal set of connected vertices.

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.

[^0]

Connected components demo

To visit a vertex v :

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

v	marked[]	id[]
0	F	-
1	F	-
2	F	-
3	F	-
4	F	-
5	F	-
6	F	-
7	F	-
8	F	-
9	F	-
10	F	-
11	F	-
12	F	-

graph G

Connected components demo

To visit a vertex v :

- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent to v.

done

Finding connected components with DFS

```
public class CC
{
    private boolean[] marked;
    private int[] id;
    private int count;
    public CC(Graph G)
    {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        for (int v = 0; v < G.V(); v++)
        {
            if (!marked[v])
            {
                dfs(G, v);
                count++;
            }
        }
    }
    public int count()
    public int id(int v)
    public boolean connected(int v, int w)
    private void dfs(Graph G, int v)
}
```


Finding connected components with DFS (continued)

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."

- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value ≥ 70.
- Blob: connected component of 20-30 pixels.
black $=0$
white $=255$

Particle tracking. Track moving particles over time.

Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

problem	BFS	DFS	time
path between s and \mathbf{t}	\checkmark	\checkmark	$E+V$
shortest path between s and t	\checkmark		$E+V$
connected components	\checkmark	\checkmark	$E+V$
biconnected components		\checkmark	$E+V$
cycle	\checkmark	\checkmark	$E+V$
Euler cycle		\checkmark	$E+V$
Hamilton cycle			$2^{1.657 \mathrm{~V}}$
bipartiteness	\checkmark	\checkmark	$E+V$
planarity		\checkmark	$E+V$
graph isomorphism			$2^{c \sqrt{V \log V}}$

[^0]: tinyG.txt
 $V \longrightarrow 13$ $13 \leftarrow E$
 05
 43
 01
 912
 64

 54
 02
 1112
 910
 06
 78
 911
 53

