
Vectors 9/17/2016 5:37 PM

1

Arrays 1

Arrays

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Arrays 2

Array Definition
 An array is a sequenced collection of

variables all of the same type. Each
variable, or cell, in an array has an index,
which uniquely refers to the value stored in
that cell. The cells of an array, A, are
numbered 0, 1, 2, and so on.

 Each value stored in an array is often called
an element of that array.

A

0 1 2 ni

© 2014 Goodrich, Tamassia, Goldwasser

Vectors 9/17/2016 5:37 PM

2

Arrays 3

Array Length and Capacity

 Since the length of an array determines the
maximum number of things that can be stored in
the array, we will sometimes refer to the length of
an array as its capacity.

 In Java, the length of an array named a can be
accessed using the syntax a.length. Thus, the cells
of an array, a, are numbered 0, 1, 2, and so on, up
through a.length−1, and the cell with index k can
be accessed with syntax a[k].

a

0 1 2 nk

© 2014 Goodrich, Tamassia, Goldwasser

Declaring Arrays (first way)
 The first way to create an array is to use an

assignment to a literal form when initially declaring the
array, using a syntax as:

 The elementType can be any Java base type or class
name, and arrayName can be any valid Java identifier.
The initial values must be of the same type as the
array.

© 2014 Goodrich, Tamassia, Goldwasser Arrays 4

Vectors 9/17/2016 5:37 PM

3

Declaring Arrays (second way)
 The second way to create an array is to use

the new operator.

 However, because an array is not an instance of a
class, we do not use a typical constructor. Instead
we use the syntax:

new elementType[length]

 length is a positive integer denoting the length
of the new array.

 The new operator returns a reference to the
new array, and typically this would be
assigned to an array variable.

© 2014 Goodrich, Tamassia, Goldwasser Arrays 5

Arrays of Characters or
Object References

 An array can store primitive elements, such as
characters.

 An array can also store references to objects.

© 2014 Goodrich, Tamassia, Goldwasser Arrays 6

Vectors 9/17/2016 5:37 PM

4

Java Example: Game Entries
 A game entry stores the name of a player and her best score so far in a game

© 2014 Goodrich, Tamassia, Goldwasser Arrays 7

Java Example: Scoreboard

© 2014 Goodrich, Tamassia, Goldwasser Arrays 8

 Keep track of players and their best scores in an array, board

 The elements of board are objects of class GameEntry

 Array board is sorted by score

Vectors 9/17/2016 5:37 PM

5

Arrays 9

Adding an Entry

 To add an entry e into array board at index i, we
need to make room for it by shifting forward the
n - i entries board[i], …, board[n 1]

board

0 1 2 ni

board

0 1 2 ni

0 1 2 n

e

i

© 2014 Goodrich, Tamassia, Goldwasser

board

Java Example

© 2014 Goodrich, Tamassia, Goldwasser Arrays 10

Vectors 9/17/2016 5:37 PM

6

Arrays 11

Removing an Entry

 To remove the entry e at index i, we need to fill the hole
left by e by shifting backward the n - i - 1 elements
board[i + 1], …, board[n 1]

0 1 2 ni

0 1 2 n

e

i

0 1 2 ni

© 2014 Goodrich, Tamassia, Goldwasser

board

board

board

Java Example

© 2014 Goodrich, Tamassia, Goldwasser Arrays 12

Vectors 9/17/2016 5:37 PM

7

Singly Linked Lists 13

Singly Linked Lists

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Singly Linked Lists 14

Singly Linked List

 A singly linked list is a
concrete data structure
consisting of a sequence
of nodes, starting from a
head pointer

 Each node stores
 element

 link to the next node

next

element node

A B C D

head

Vectors 9/17/2016 5:37 PM

8

Singly Linked Lists 15

A Nested Node Class

Singly Linked Lists 16

Accessor Methods

Vectors 9/17/2016 5:37 PM

9

Singly Linked Lists 17

Inserting at the Head
• Allocate new

node

• Insert new
element

• Have new
node point
to old head

• Update
head to
point to new
node

Inserting at the Tail
• Allocate a new

node

• Insert new

element

• Have new node

point to null

• Have old last node

point to new node

• Update tail to

point to new node

Singly Linked Lists 18

Vectors 9/17/2016 5:37 PM

10

Singly Linked Lists 19

Java Methods

Removing at the Head

• Update head

to point to

next node in

the list

• Allow

garbage

collector to

reclaim the

former first

node

Singly Linked Lists 20

Vectors 9/17/2016 5:37 PM

11

Singly Linked Lists 21

Java Method

Removing at the Tail

• Removing at the tail of a singly linked list is
not efficient!

• There is no constant-time way to update the
tail to point to the previous node

Singly Linked Lists 22

Vectors 9/17/2016 5:37 PM

12

Doubly Linked Lists 23

Doubly Linked Lists

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Doubly Linked Lists 24

Doubly Linked List
 A doubly linked list can be traversed

forward and backward

 Nodes store:

 element

 link to the previous node

 link to the next node

 Special trailer and header nodes

prev next

element

trailerheader nodes/positions

elements

node

© 2014 Goodrich, Tamassia, Goldwasser

Vectors 9/17/2016 5:37 PM

13

Doubly Linked Lists 25

Insertion
 Insert a new node, q, between p and its successor.

A B X C

A B C

p

A B C

p

X

q

p q

© 2014 Goodrich, Tamassia, Goldwasser

Doubly Linked Lists 26

Deletion
 Remove a node, p, from a doubly linked list.

A B C D

p

A B C

D

p

A B C

© 2014 Goodrich, Tamassia, Goldwasser

Vectors 9/17/2016 5:37 PM

14

Doubly-Linked List in Java

© 2014 Goodrich, Tamassia, Goldwasser Doubly Linked Lists 27

Doubly-Linked List in Java, 2

© 2014 Goodrich, Tamassia, Goldwasser Doubly Linked Lists 28

Vectors 9/17/2016 5:37 PM

15

Doubly-Linked List in Java, 3

© 2014 Goodrich, Tamassia, Goldwasser Doubly Linked Lists 29

Doubly-Linked List in Java, 4

© 2014 Goodrich, Tamassia, Goldwasser Doubly Linked Lists 30

Vectors 9/17/2016 5:37 PM

16

Lists and Iterators 31

Lists and Iterators

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

The java.util.List ADT
 The java.util.List interface includes the following methods:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 32

Vectors 9/17/2016 5:37 PM

17

Example

 A sequence of List operations:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 33

Lists and Iterators 34

Array Lists

 An obvious choice for implementing the list ADT is
to use an array, A, where A[i] stores (a reference
to) the element with index i.

 With a representation based on an array A, the
get(i) and set(i, e) methods are easy to implement
by accessing A[i] (assuming i is a legitimate
index).

A

0 1 2 ni

© 2014 Goodrich, Tamassia, Goldwasser

Vectors 9/17/2016 5:37 PM

18

Lists and Iterators 35

Insertion

 In an operation add(i, o), we need to make room
for the new element by shifting forward the n - i
elements A[i], …, A[n - 1]

 In the worst case (i = 0), this takes O(n) time

A

0 1 2 ni

A

0 1 2 ni

A

0 1 2 n

o

i

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 36

Element Removal

 In an operation remove(i), we need to fill the hole left by
the removed element by shifting backward the n - i - 1
elements A[i + 1], …, A[n - 1]

 In the worst case (i = 0), this takes O(n) time

A

0 1 2 ni

A

0 1 2 n

o

i

A

0 1 2 ni

© 2014 Goodrich, Tamassia, Goldwasser

Vectors 9/17/2016 5:37 PM

19

Lists and Iterators 37

Performance

 In an array-based implementation of a
dynamic list:

 The space used by the data structure is O(n)

 Indexing the element at i takes O(1) time

 add and remove run in O(n) time

 In an add operation, when the array is full,

instead of throwing an exception, we can
replace the array with a larger one …

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 38

Vectors 9/17/2016 5:37 PM

20

Java Implementation, 2

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 39

Lists and Iterators 40

Growable Array-based Array List
 Let push(o) be the operation

that adds element o at the
end of the list

 When the array is full, we
replace the array with a
larger one

 How large should the new
array be?

 Incremental strategy: increase
the size by a constant c

 Doubling strategy: double the
size

Algorithm push(o)

if t = S.length - 1 then

A new array of

size …

for i 0 to n-1 do

A[i] S[i]

S A

n n + 1

S[n-1] o

© 2014 Goodrich, Tamassia, Goldwasser

Vectors 9/17/2016 5:37 PM

21

Lists and Iterators 41

Comparison of the Strategies

 We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n

push operations

 We assume that we start with an empty list
represented by a growable array of size 1

 We call amortized time of a push operation
the average time taken by a push operation
over the series of operations, i.e., T(n)/n

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 42

Incremental Strategy Analysis

 Over n push operations, we replace the array k =

n/c times, where c is a constant

 The total time T(n) of a series of n push operations

is proportional to

n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

 Thus, the amortized time of a push operation is
O(n)

© 2014 Goodrich, Tamassia, Goldwasser

Vectors 9/17/2016 5:37 PM

22

Lists and Iterators 43

Doubling Strategy Analysis

 We replace the array k = log2 n

times

 The total time T(n) of a series of n

push operations is proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =

n + 2k + 1 - 1 =

3n - 1

 T(n) is O(n)

 The amortized time of a push
operation is O(1)

geometric series

1

2

1
4

8

© 2014 Goodrich, Tamassia, Goldwasser

Positional Lists
 To provide for a general abstraction of a sequence of

elements with the ability to identify the location of an
element, we define a positional list ADT.

 A position acts as a marker or token within the
broader positional list.

 A position p is unaffected by changes elsewhere in a
list; the only way in which a position becomes invalid
is if an explicit command is issued to delete it.

 A position instance is a simple object, supporting only
the following method:

 P.getElement(): Return the element stored at position p.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 44

Vectors 9/17/2016 5:37 PM

23

Positional List ADT

 Accessor methods:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 45

Positional List ADT, 2

 Update methods:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 46

Vectors 9/17/2016 5:37 PM

24

Example

 A sequence of Positional List operations:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 47

Positional List Implementation

 The most natural way
to implement a
positional list is with a
doubly-linked list.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 48

prev next

element

trailerheader nodes/positions

elements

node

Vectors 9/17/2016 5:37 PM

25

Lists and Iterators 49

Insertion
 Insert a new node, q, between p and its successor.

A B X C

A B C

p

A B C

p

X

q

p q

© 2014 Goodrich, Tamassia, Goldwasser

Lists and Iterators 50

Deletion
 Remove a node, p, from a doubly-linked list.

A B C D

p

A B C

D

p

A B C

© 2014 Goodrich, Tamassia, Goldwasser

Vectors 9/17/2016 5:37 PM

26

Iterators

 An iterator is a software design pattern
that abstracts the process of scanning
through a sequence of elements, one
element at a time.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 51

The Iterable Interface
 Java defines a parameterized interface, named

Iterable, that includes the following single method:

 iterator(): Returns an iterator of the elements in the
collection.

 An instance of a typical collection class in Java, such
as an ArrayList, is iterable (but not itself an iterator); it
produces an iterator for its collection as the return
value of the iterator() method.

 Each call to iterator() returns a new iterator instance,
thereby allowing multiple (even simultaneous)
traversals of a collection.

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 52

Vectors 9/17/2016 5:37 PM

27

The for-each Loop

 Java’s Iterable class also plays a fundamental
role in support of the “for-each” loop syntax:

is equivalent to:

© 2014 Goodrich, Tamassia, Goldwasser Lists and Iterators 53

