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Array Definition
 An array is a sequenced collection of 

variables all of the same type. Each 
variable, or cell, in an array has an index, 
which uniquely refers to the value stored in 
that cell. The cells of an array, A, are 
numbered 0, 1, 2, and so on. 

 Each value stored in an array is often called 
an element of that array. 

A

0 1 2 ni
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Array Length and Capacity

 Since the length of an array determines the 
maximum number of things that can be stored in 
the array, we will sometimes refer to the length of 
an array as its capacity. 

 In Java, the length of an array named a can be 
accessed using the syntax a.length. Thus, the cells 
of an array, a, are numbered 0, 1, 2, and so on, up 
through a.length−1, and the cell with index k can 
be accessed with syntax a[k]. 

a

0 1 2 nk
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Declaring Arrays (first way)
 The first way to create an array is to use an 

assignment to a literal form when initially declaring the 
array, using a syntax as: 

 The elementType can be any Java base type or class 
name, and arrayName can be any valid Java identifier. 
The initial values must be of the same type as the 
array. 
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Declaring Arrays (second way)
 The second way to create an array is to use 

the new operator. 

 However, because an array is not an instance of a 
class, we do not use a typical constructor. Instead 
we use the syntax: 

new elementType[length] 

 length is a positive integer denoting the length 
of the new array. 

 The new operator returns a reference to the 
new array, and typically this would be 
assigned to an array variable. 
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Arrays of Characters or 
Object References

 An array can store primitive elements, such as 
characters.

 An array can also store references to objects.
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Java Example: Game Entries
 A game entry stores the name of a player and her best score so far in a game
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Java Example: Scoreboard
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 Keep track of  players and their best scores in an array, board

 The elements of board are objects of class GameEntry

 Array board is sorted by score
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Adding an Entry

 To add an entry e into array board at index i, we 
need to make room for it by shifting forward the 
n - i entries board[i], …, board[n  1]

board

0 1 2 ni

board

0 1 2 ni

0 1 2 n

e

i
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Java Example
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Removing an Entry

 To remove the entry e at index i, we need to fill the hole 
left by e by shifting backward the n - i - 1 elements 
board[i + 1], …, board[n  1]

0 1 2 ni

0 1 2 n

e

i

0 1 2 ni
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board

board

Java Example
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Singly Linked Lists

Presentation for use with the textbook Data Structures and 
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Singly Linked List

 A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes, starting from a 
head pointer

 Each node stores
 element

 link to the next node

next

element node

A B C D



head
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A Nested Node Class

Singly Linked Lists 16

Accessor Methods
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Singly Linked Lists 17

Inserting at the Head
• Allocate new 

node

• Insert new 
element

• Have new 
node point 
to old head

• Update 
head to 
point to new 
node

Inserting at the Tail
• Allocate a new 

node

• Insert new 

element

• Have new node 

point to null

• Have old last node 

point to new node

• Update tail to 

point to new node

Singly Linked Lists 18
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Java Methods

Removing at the Head

• Update head 

to point to 

next node in 

the list

• Allow 

garbage 

collector to 

reclaim the 

former first 

node
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Java Method

Removing at the Tail 

• Removing at the tail of a singly linked list is 
not efficient!

• There is no constant-time way to update the 
tail to point to the previous node

Singly Linked Lists 22
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Doubly Linked Lists
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Doubly Linked List
 A doubly linked list can be traversed 

forward and backward

 Nodes store:

 element

 link to the previous node

 link to the next node

 Special trailer and header nodes

prev next

element

trailerheader nodes/positions

elements

node
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Insertion
 Insert a new node, q, between p and its successor.

A B X C

A B C

p

A B C

p

X

q

p q
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Deletion
 Remove a node, p, from a doubly linked list.

A B C D

p

A B C

D

p

A B C
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Doubly-Linked List in Java
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Doubly-Linked List in Java, 2
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Doubly-Linked List in Java, 3
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Doubly-Linked List in Java, 4
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Lists and Iterators

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014

The java.util.List ADT
 The java.util.List interface includes the following methods:
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Example

 A sequence of List operations:
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Lists and Iterators 34

Array Lists

 An obvious choice for implementing the list ADT is 
to use an array, A, where A[i] stores (a reference 
to) the element with index i.

 With a representation based on an array A, the 
get(i) and set(i, e) methods are easy to implement 
by accessing A[i] (assuming i is a legitimate 
index).

A

0 1 2 ni
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Insertion

 In an operation add(i, o), we need to make room 
for the new element by shifting forward the n - i
elements A[i], …, A[n - 1]

 In the worst case (i = 0), this takes O(n) time

A

0 1 2 ni

A

0 1 2 ni

A

0 1 2 n

o

i
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Element Removal

 In an operation remove(i), we need to fill the hole left by 
the removed element by shifting backward the n - i - 1
elements A[i + 1], …, A[n - 1]

 In the worst case (i = 0), this takes O(n) time

A

0 1 2 ni

A

0 1 2 n

o

i

A

0 1 2 ni
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Performance

 In an array-based implementation of a 
dynamic list:

 The space used by the data structure is O(n)

 Indexing the element at i takes O(1) time

 add and remove run in O(n) time

 In an add operation, when the array is full, 

instead of throwing an exception, we can 
replace the array with a larger one …

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation
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Java Implementation, 2
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Lists and Iterators 40

Growable Array-based Array List
 Let push(o) be the operation 

that adds element o at the 
end of the list

 When the array is full, we 
replace the array with a 
larger one

 How large should the new 
array be?

 Incremental strategy: increase 
the size by a constant c

 Doubling strategy: double the 
size

Algorithm push(o)

if t = S.length - 1 then

A  new array of

size …

for i  0 to n-1 do

A[i]  S[i]

S  A

n  n + 1

S[n-1]  o
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Comparison of the Strategies

 We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(n) needed to perform a series of n

push operations

 We assume that we start with an empty list 
represented by a growable array of size 1

 We call amortized time of a push operation 
the average time taken by a push operation 
over the series of operations, i.e.,  T(n)/n

© 2014 Goodrich, Tamassia, Goldwasser
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Incremental Strategy Analysis 

 Over n push operations, we replace the array k = 

n/c times, where c is a constant

 The total time T(n) of a series of n push operations 

is proportional to

n + c + 2c + 3c + 4c + … + kc =

n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

 Thus, the amortized time of a push operation is 
O(n)
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Doubling Strategy Analysis

 We replace the array k = log2 n 

times

 The total time T(n) of a series of n

push operations is proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =

n + 2k + 1 - 1 = 

3n - 1

 T(n) is O(n)

 The amortized time of a push 
operation is O(1)

geometric series

1

2

1
4

8
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Positional Lists
 To provide for a general abstraction of a sequence of 

elements with the ability to identify the location of an 
element, we define a positional list ADT. 

 A position acts as a marker or token within the 
broader positional list. 

 A position p is unaffected by changes elsewhere in a 
list; the only way in which a position becomes invalid 
is if an explicit command is issued to delete it.

 A position instance is a simple object, supporting only 
the following method:

 P.getElement( ): Return the element stored at position p.
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Positional List ADT

 Accessor methods:
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Positional List ADT, 2

 Update methods:
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Example

 A sequence of Positional List operations:
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Positional List Implementation

 The most natural way 
to implement a 
positional list is with a 
doubly-linked list.
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prev next

element

trailerheader nodes/positions

elements

node
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Insertion
 Insert a new node, q, between p and its successor.

A B X C

A B C

p

A B C

p

X

q

p q
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Deletion
 Remove a node, p, from a doubly-linked list.

A B C D

p

A B C

D

p

A B C
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Iterators

 An iterator is a software design pattern 
that abstracts the process of scanning 
through a sequence of elements, one 
element at a time.
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The Iterable Interface
 Java defines a parameterized interface, named 

Iterable, that includes the following single method:

 iterator( ): Returns an iterator of the elements in the 
collection.

 An instance of a typical collection class in Java, such 
as an ArrayList, is iterable (but not itself an iterator); it 
produces an iterator for its collection as the return 
value of the iterator( ) method. 

 Each call to iterator( ) returns a new iterator instance, 
thereby allowing multiple (even simultaneous) 
traversals of a collection.
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The for-each Loop

 Java’s Iterable class also plays a fundamental 
role in support of the “for-each” loop syntax:

is equivalent to:
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