
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

2.4 PRIORITY QUEUES

‣ API and elementary
implementations

‣ binary heaps
‣ heapsort
‣ event-driven simulation

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ API and elementary
implementations

‣ binary heaps
‣ heapsort
‣ event-driven simulation

2.4 PRIORITY QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

A collection is a data types that store groups of items.

3

Collections

data type key operations data structure

stack PUSH, POP linked list, resizing array

queue ENQUEUE, DEQUEUE linked list, resizing array

priority queue INSERT, DELETE-MAX binary heap

symbol table PUT, GET, DELETE BST, hash table

set ADD, CONTAINS, DELETE BST, hash table

“ Show me your code and conceal your data structures, and I shall

 continue to be mystified. Show me your data structures, and I won't

 usually need your code; it'll be obvious.” — Fred Brooks

4

Priority queue

Collections. Insert and delete items. Which item to delete?
 
Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.
 
Priority queue. Remove the largest (or smallest) item.

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E M A P L E A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

5

Priority queue API

Requirement. Generic items are Comparable.

 public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create an empty priority queue

MaxPQ(Key[] a) create a priority queue with given keys

void insert(Key v) insert a key into the priority queue

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

Key max() return the largest key

int size() number of entries in the priority queue

Key must be Comparable
(bounded type parameter)

6

Priority queue applications

・Event-driven simulation. [customers in a line, colliding particles]

・Numerical computation. [reducing roundoff error]

・Data compression. [Huffman codes]

・Graph searching. [Dijkstra's algorithm, Prim's algorithm]

・Number theory. [sum of powers]

・Artificial intelligence. [A* search]

・Statistics. [online median in data stream]

・Operating systems. [load balancing, interrupt handling]

・Computer networks. [web cache]

・Discrete optimization. [bin packing, scheduling]

・Spam filtering. [Bayesian spam filter]

Generalizes: stack, queue, randomized queue.

7

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

goal log N log N log N

order of growth of running time for priority queue with N items

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ API and elementary
implementations

‣ binary heaps
‣ heapsort
‣ event-driven simulation

2.4 PRIORITY QUEUES

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete tree with N nodes is ⎣lg N⎦.
Pf. Height increases only when N is a power of 2.

9

Complete binary tree

complete tree with N = 16 nodes (height = 4)

10

A complete binary tree in nature

11

Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.
 
Heap-ordered binary tree.

・Keys in nodes.

・Parent's key no smaller than  
children's keys.

 
Array representation.

・Indices start at 1.

・Take nodes in level order.

・No explicit links needed!

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

12

Binary heap properties

Proposition. Largest key is a[1], which is root of binary tree.
 
Proposition. Can use array indices to move through tree.

・Parent of node at k is at k/2.

・Children of node at k are at 2k and 2k+1.

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

13

Binary heap demo

T P R N H O A E I G

R

H O AN

E I G

P

T

heap ordered

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

14

Binary heap demo

S R O N P G A E I H

R O

AP

E I

G

H

heap ordered

S

N

5

E

N

I

P

H

T

G

S

O

R

A

violates heap order
(larger key than parent)

E

N

I

S

H

P

G

T

O

R

A5

2

1

Bottom-up reheapify (swim)

Scenario. Child's key becomes larger key than its parent's key.
 
To eliminate the violation:

・Exchange key in child with key in parent.

・Repeat until heap order restored.
 
 
 
 
 
 
 
 
 
 
Peter principle. Node promoted to level of incompetence.

15

Promotion in a heap

private void swim(int k)
{
 while (k > 1 && less(k/2, k))
 {
 exch(k, k/2);
 k = k/2;
 }
}

parent of node at k is at k/2

Insert. Add node at end, then swim it up.
Cost. At most 1 + lg N compares.

Heap operations

E

N

I

P

G

H

S

T

O

R

A

key to insert

E

N

I

P

G

H

S

T

O

R

A

add key to heap
violates heap order

E

N

I

S

G

P

H

T

O

R

A

swim up

E

N

I

S

G

P

H

T

O

R

A

key to remove

violates
heap order

exchange key
with root

E

N

I

S

G

P

T

H

O

R

A

remove node
from heap

E

N

I

P

G

H

S

O

R

A

sink down

insert remove the maximum

16

Insertion in a heap

public void insert(Key x)
{
 pq[++N] = x;
 swim(N);
}

Scenario. Parent's key becomes smaller than one (or both) of its children's.
 
To eliminate the violation:

・Exchange key in parent with key in larger child.

・Repeat until heap order restored.
 
 
 
 
 
 
 
 
 
 
Power struggle. Better subordinate promoted.

17

Demotion in a heap

private void sink(int k)
{
 while (2*k <= N)
 {
 int j = 2*k;
 if (j < N && less(j, j+1)) j++;
 if (!less(k, j)) break;
 exch(k, j);
 k = j;
 }
}

children of node at k are
2k and 2k+1 5

E

P

I

H

N

S

G

T

O

R

A

violates heap order
(smaller than a child)

E

P

I

S

H

N

G

T

O

R

A5

10

2

2

Top-down reheapify (sink)

why not smaller child?

Delete max. Exchange root with node at end, then sink it down.
Cost. At most 2 lg N compares.

18

Delete the maximum in a heap

public Key delMax()
{
 Key max = pq[1];
 exch(1, N--);
 sink(1);
 pq[N+1] = null;
 return max;
}

prevent loitering

Heap operations

E

N

I

P

G

H

S

T

O

R

A

key to insert

E

N

I

P

G

H

S

T

O

R

A

add key to heap
violates heap order

E

N

I

S

G

P

H

T

O

R

A

swim up

E

N

I

S

G

P

H

T

O

R

A

key to remove

violates
heap order

exchange key
with root

E

N

I

S

G

P

T

H

O

R

A

remove node
from heap

E

N

I

P

G

H

S

O

R

A

sink down

insert remove the maximum

19

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq;
 private int N;

 public MaxPQ(int capacity)
 { pq = (Key[]) new Comparable[capacity+1]; }

 public boolean isEmpty()
 { return N == 0; }
 public void insert(Key key)
 public Key delMax()
 { /* see previous code */ }

 private void swim(int k)
 private void sink(int k)
 { /* see previous code */ }

 private boolean less(int i, int j)
 { return pq[i].compareTo(pq[j]) < 0; }
 private void exch(int i, int j)
 { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
}

array helper functions

heap helper functions

PQ ops

fixed capacity
(for simplicity)

20

Priority queues implementation cost summary

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

order-of-growth of running time for priority queue with N items

