
DISTRIBUTED	SYSTEMS	
ARCHITECTURE
CS435 Distributed Systems
Basit Qureshi PhD, FHEA, SMIEEE, MACM
https://www.drbasit.org/

https://www.drbasit.org/


TOPICS
• Operating Systems, a quick review
• Distributed Systems Themes
• Dist. Sys. Challenges
• Dist. Sys. Architecture

• Software Architecture
• Systems Architecture

• Client-server arch.
• P2P arch.
• Hybrid approach

• Distributed Services

2© 2024 - Dr. Basit Qureshi



OPERATING	SYSTEMS,	A	QUICK	REVIEW
• Computer Organization

3© 2024 - Dr. Basit Qureshi



OPERATING	SYSTEMS,	A	QUICK	REVIEW
• Uni-Computer Operating Systems

• Application, Memory, Processor, File-system resources, all on one machine

4© 2024 - Dr. Basit Qureshi



OPERATING	SYSTEMS,	A	QUICK	REVIEW
• Multi-Computer Operating System

• All computers run using the same OS.
• Memory shared between processors.
• Dist. Applications run sharing Memory and CPU resources

5© 2024 - Dr. Basit Qureshi



OPERATING	SYSTEMS,	A	QUICK	REVIEW
• Network Operating Systems

• Network File system mounting on individual machines.
• Resources accessible via network. 
• Hard to maintain a consistent view.
• Relatively primitive set of services provided (e.g. Printers)
• Configuration overhead/complexity

6© 2024 - Dr. Basit Qureshi



OPERATING	SYSTEMS,	A	QUICK	REVIEW
• Middleware-based Operating Systems

• Middleware provides a set of services and communication protocols
• Abstracts the complexities of distributed computing, making it easier for developers 

to design and implement distributed applications. E.g. Socket APIs

7© 2024 - Dr. Basit Qureshi



OPERATING	SYSTEMS,	A	QUICK	REVIEW
• Comparing Operating Systems

8© 2024 - Dr. Basit Qureshi

Item
Distributed OS Network 

OS
Middleware-

based OSMultiproc. Multicomp.

Degree of transparency Very High High Low High

Same OS on all nodes Yes Yes No No

Number of copies of OS 1 N N N

Basis for 
communication

Shared 
memory Messages Files Model specific

Resource management Global, central Global, 
distributed Per node Per node

Scalability No Moderately Yes Varies

Openness Closed Closed Open Open



DISTRIBUTED	SYSTEM	THEMES

© 2024 - Dr. Basit Qureshi 10



DISTRIBUTED	SYSTEM	THEMES
• Distributed Systems are a collection of independent computers that 

appears as a single system to the user(s) 
• Independent = autonomous, self-contained 
• Single system = user not aware of distribution

• GOALS
• Scaling
• Collaboration
• Latency
• Acessibility
• Availability
• Transparency

© 2024 - Dr. Basit Qureshi 11



1.	SCALING
• Vertical Scaling (Powerful systems)

• Increases in processor performance have not been 
keeping up with Moore’s Law since around 2005. 

• Adding more processor cores helped improve 
performance; but need to write multi-threaded 
programs
• Intel Xeon 8490h 1.90GHz~3.50GHz 60Core/120Thread 

Processor (15000 USD)
• Apple M3 Ultra 32-core CPU/ 80 Core GPU 
• Nvidia Geforce RTX 4090 Ti 18,432 CUDA cores

• Horizontal Scaling
• Distributed load across more systems

• Pixar Movie Rendering: 2000 machines with 24000+ cores. 
• Google: A single Google query uses 1,000 computers in 

0.2 seconds to retrieve an answer

© 2024 - Dr. Basit Qureshi 12



2.	COLLABORATION
• Collaborate

• Make content
• Social connectivity
• E-Commerce
• News & media

© 2024 - Dr. Basit Qureshi 13



3.	LATENCY

• Caching
• Keep the data close to where it is needed

• Replication
• Make multiple copies

• Caching vs. replication 
• Caching: temporary copies of frequently accessed data closer to where it’s 

needed
• Replication: multiple copies of data for increased fault tolerance 

© 2024 - Dr. Basit Qureshi 14



4.	ACCESSIBILITY

• Distributed Systems are 
accessible through
Systems, IoT devices,
Smart-phones etc.
• IoT = Internet of Things

• 2023: 16.7 Billion devices

• Smart-Phones
• 2023: 6.2 Billion devices

© 2024 - Dr. Basit Qureshi 15



5.	AVAILABILITY

• System Components Fail
• Computers, processes, disks, memory, data centers etc
• Replicas can take over

• Fault tolerance 
• Identify & recover from component failures 

• Recoverability 
• Software can restart and function – May involve restoring state

© 2024 - Dr. Basit Qureshi 16



6.	TRANSPARENCY

• High level: hide distribution from users 
• Low level: hide distribution from software 

• Location transparency Users don’t care where resources are 

• Migration transparency Resources move at will 

• Replication transparency Users cannot tell whether there are copies of resources 

• Concurrency transparency Users share resources transparently 

• Parallelism transparency Operations take place in parallel without user’s knowledge 

• Failure transparency Lower-level software works around any failures – things just work

© 2024 - Dr. Basit Qureshi 17



DISTRIBUTED	SYSTEM	CHALLENGES

© 2024 - Dr. Basit Qureshi 18



DISTRIBUTED	SYSTEM	CHALLENGES

• Concurrency 
• Latency 
• Partial Failure
• Security

© 2024 - Dr. Basit Qureshi 19



DISTRIBUTED	SYSTEM	CHALLENGES

• Concurrency 
• Lots of requests may occur at the same time 
• Need to deal with concurrent requests 
• Need to ensure consistency of all data 
• Understand critical sections & mutual exclusion 

• Beware: mutual exclusion (locking) can affect performance
• Caching and replication costs

• Complex; synchronization, message-delivery, check-sums etc

© 2024 - Dr. Basit Qureshi 20



DISTRIBUTED	SYSTEM	CHALLENGES

• Latency 
• Network delays

• Synchronous: Use time-stamps to determine time to respond
• Partial synchronous: Protocols operate correctly only if all messages are 

received within some time.
• Asynchronous:

• Messages may take an unpredictable amount of time
• Lost or delayed?
• Re-transmission -> duplicate messages
• Mess up perception of time
• Message arrive in different order

• Caching: Keep data close to where it’s processed to maximize efficiency 
• Memory vs. disk
• Local disk vs. remote server
• Remote memory vs. remote disk

© 2024 - Dr. Basit Qureshi 21



DISTRIBUTED	SYSTEM	CHALLENGES

• Partial Failure 
• In local systems, failure is usually total (all-or-nothing) 
• In distributed systems, we get partial failure 

• A component can fail while others continue to work
• Failure of a network link is indistinguishable from a remote server failure
• Send a request but don't get a response ⇒ what happened?

• No global state 
• There is no global state that can be examined to determine errors
• There is no agent that can determine which components failed and inform 

everyone else 
• Need to ensure the state of the entire system is consistent after a failure

© 2024 - Dr. Basit Qureshi 22



DISTRIBUTED	SYSTEM	CHALLENGES

• Security
• Traditionally managed by operating systems 

• Users authenticate themselves to the system
• Each user has a unique user ID (UID) 
• Access permissions = f(UID) 

• Now applications must take responsibility for 
• Identification, Authentication, Access control, Encryption, tamper detection, Audit trail

• The environment 
• Public networks, remotely-managed services, 3rd party services 
• Trust: do you trust how the 3rd party services are written & managed? 

• Some issues: 
• Malicious interference, bad user input, impersonation of users & services 
• Protocol attacks, input validation attacks, time-based attacks, replay attacks 

• Rely on cryptography (hashes, cryptography) for identity management, authentication, 
encryption, tamper detection … and also rely on good defensive programming!

© 2024 - Dr. Basit Qureshi 23



ARCHITECTURE

© 2024 - Dr. Basit Qureshi 24



DISTRIBUTED	SYSTEMS	ARCHITECTURE

25© 2024 - Dr. Basit Qureshi

Software Architecture System Architecture

Dist Sys Architecture



SOFTWARE	ARCHITECTURE
• “The logical organization of software components and their 

interaction with other structures”
• Focuses entirely on “components”. Example: website front-end.
• Four common types

• Layered
• Object based
• Data centric
• Event based

26© 2024 - Dr. Basit Qureshi



SOFTWARE	ARCHITECTURE
• Layered architecture

• Provides a modular approach to software
• Software components organized as layers
• Information flows through layers. E.g. a request 

goes from the top down, and the response goes 
from the bottom up.

• Any layer can not directly communicate with 
another layer

• No intermediate layer can be skipped!

27© 2024 - Dr. Basit Qureshi



SOFTWARE	ARCHITECTURE
• Layered architecture

• Advantage: 
• 1. Each layer can be modified independently without affecting the whole 

system. 
• 2. Calls always follow a predetermined path and that each layer is simple to 

replace or modify without affecting the architecture as a whole.
• This type of architecture is used in Open System Interconnection (OSI) model.
• In some cases, layered architecture is in cross-layer coordination. In a cross-

layer, any adjacent layer can be skipped until it fulfils the request and provides 
better performance results.

28© 2024 - Dr. Basit Qureshi



SOFTWARE	ARCHITECTURE
• Object based architecture

• Components are treated as objects which 
convey information to each other. 

• Contains an arrangement of loosely coupled 
objects. 

• Objects can interact with each other through 
method calls e.g. Remote Procedure Call 
(RPC) mechanism or Remote Method 
Invocation (RMI) mechanism.

• Examples: REST API Calls, Web Services, Java 
RMI

29© 2024 - Dr. Basit Qureshi



SOFTWARE	ARCHITECTURE
• Data centric architecture

• Works on a central data repository, either 
actively or passively

• All the components are connected to this data 
repository. 

• Producer-consumer communication model:
• Producer produces items to the common 

data repository
• Consumer (individual) can request data 

from the common data repository
• Example: Web-based E-commerce systems

30© 2024 - Dr. Basit Qureshi



SOFTWARE	ARCHITECTURE
• Event based architecture

• Similar to Data centered architecture (replaces 
Data with events) 

• Events are present at the center in the Event bus 
and delivered to the required component 
whenever needed

• When an event occurs, the system, as well as the 
receiver, get notified. Data, URLs etc are 
transmitted through events.

• Components are loosely coupled. i.e., it’s easy to 
add, remove, and modify components.

• Example: Enterprise services buses; akka.io

31© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE
• “The placement of components of a distributed system across 

multiple machines”
• Three possible types

• Centralized: Client-Server
• De-centralized: Peer-to-Peer
• Hybrid

32© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	CLIENT-SERVER 
MODEL

© 2024 - Dr. Basit Qureshi 33



SYSTEM	ARCHITECTURE:	CLIENT-SERVER MODEL
• Centralized / Client-Server model
• Every node is connected to a central coordination system

• Client − This is the first process that issues a request to the second process i.e. the server.
• Server − This is the second process that receives the request, carries it out, and sends a 

reply to the client.

34© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	CLIENT-SERVER MODEL
• Client-server interaction/request-reply behavior. 

• Server: a process that implements a service (exp: file system service, database service). 
• Client: a process that requests a service from a server 

• Communication between a client and a server can be:
• Connectionless protocol [if reliable connection available]. 
• Connection oriented protocol [otherwise, e.g. TCP/IP]. 

35© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	CLIENT-SERVER MODEL
• 2-tier Client server architecture

• The servers need not know about clients
• The clients must know the identity of servers
• Mapping of processors to processes is not necessarily 1 : 1

• Thin Client Model
• Server: Application processing and data management
• Client: Provide interface of the application

• Thick Client Model
• Server: Data management only
• Client: Complex data processing and interface

36© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	CLIENT-SERVER MODEL
• n-tier Client server architecture

• Multi tier allows separate tier for a functionality of an application
• 3-tier is common with Web/App-server, DB-server and Client-browser

37© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	CLIENT-SERVER MODEL
• n-tier Client server architecture

38© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	CLIENT-SERVER MODEL
• 3-tier arch. example: 

• Internet Search 
Engine

39© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	CLIENT-SERVER MODEL
• n-tier arch. example: 

• An MS Azure 
application using 
multiple Virtual 
Machines

40© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL

© 2024 - Dr. Basit Qureshi 41



SYSTEM	ARCHITECTURE:	P2P MODEL
• De-Centralized / Peer to Peer 

model
• No central control
• A node can either act as a client or 

server at any given time once it 
joins the network

• Each node in the network has the 
same set of responsibilities and 
capabilities.

• Design of a P2P Dist Sys conforms 
to Application and Network overlay 
requirements to keep track of all 
nodes

42© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL
• Benefits:
• Autonomy: Each node is independent of the other.
• Less costly: No need to buy an expensive server.
• No network manager
• Adding nodes is easy: Adding, deleting, and repairing nodes in this 

network is easy.
• Less network traffic than in a client/ server network.

• Challenges:
• Less secure
• Data is vulnerable. Stored in various nodes. 
• Slow performance

43© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL
• Organization

• The nodes (i.e., processes) are organized in an overlay
that adheres to a specific, deterministic topology: a
ring, a binary tree, a grid, etc.

• Deterministic schemes can be deployed for routing
messages between processes. Used to efficiently look
up data.

• Data item is uniquely associated with a key, and this
key is subsequently used as an index.

• The peer-to-peer system as a whole is now responsible
for storing (key, value) pairs.

• Each node is assigned an identifier, and each node is
responsible for storing data associated with a specific
subset of keys.

44© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL
• Organization:

• Structured P2P: Nodes adhere to a predefined distributed data structure.
• Unstructured P2P: Networks feature nodes that randomly select their neighbors.
• Hybrid P2P: Systems combine elements of both, with certain nodes assigned unique, 

organized functions.

45© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL
• Structured P2P:

• Typically maintains a Distributed Hash Table (DHT)
• Each peer is responsible for a specific part of the 

content in the network. 
• Network use hash functions and assign values to every 

content and every peer in the network
• A global protocol determines which peer is responsible 

for which content. 
• Whenever a peer wants to search for data, it uses the 

global protocol to determine the peers responsible for 
the data and then directs the search towards the 
responsible peers.

46© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL
Structured P2P:
1. Node Identification and Routing:

• Each node in the network is assigned a unique identifier using a hash function. 
• This identifier is typically a large number or a string of characters.
• A consistent hash function is used to map both data and node identifiers to the same address 

space.

2. Distributed Hash Table (DHT):
• DHT is a distributed database that maps keys to values, where keys and values are typically 

associated with nodes and data items.
• The DHT is divided into buckets or partitions, and each node is responsible for a specific range of 

keys.

3. Routing Algorithm:
• Use a routing algorithm in the network to communicate.
• E.g. Chord, Kademlia, and Pastry. 

47© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL
Structured P2P:
4. Joining and Leaving the Network:

• Each new node is given a unique identifier and integrated into the DHT. 
• New nodes get redistributed responsibilities among existing nodes to maintain load balance.
• When a node leaves or fails, its responsibilities need to be transferred to other nodes.

5. Data Storage and Retrieval:
• Data is typically stored in the network using its hash value as a key. 
• To retrieve data, a lookup in the DHT using the hash of the desired key. 

6. Fault Tolerance: 
• Redundancy, replication, or backup mechanisms are employed.

7. Security and Privacy:
• Encrypted communication, authentication, and authorization mechanisms. 
• Ensure the integrity and confidentiality of data and communications.

48© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL
• Un-structured P2P:

• Lack a predefined organization or topology 
for how nodes are connected. 

• Do not rely on distributed hash table (DHT). 
• More flexible and dynamic. 
• They are often used for applications where 

the focus is on simplicity, ease of 
deployment, and adaptability. 

49© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL
Un-structured P2P:
1.Node Discovery:

• Nodes join the network without adhering to a specific organizational structure. 
• Nodes may join and leave the network at any time.
• There's no central authority or fixed rules for how nodes connect. 
• Some form of discovery mechanism is used to find and connect to other nodes.

2.Overlay Network:
• An overlay network is formed where nodes are connected to each other. 
• No organization; connections between nodes are established based on various criteria.

3.Search and Communication:
• Often rely on random or heuristic-based search methods.
• A node broadcasts a query to its neighbors or all nodes.
• Keeps propagating packets until the resource is found or a timeout occurs.

50© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	P2P MODEL
4. Data Storage and Retrieval:

• Allow nodes to store and retrieve data without a predefined organization. 
• Nodes may replicate or cache data locally.
• Searches for data are often performed by flooding the network with queries.
• Efficiency of data retrieval may vary, and there could be redundancy in the storage of data.

5. Scalability and Adaptability:
• Often more scalable and adaptable than structured systems. 
• Nodes can be added or removed without affecting the overall structure of the network.
• Quick to adapt to changes in the network, such as in file-sharing applications.

6. Challenges:
• Scalability issues 
• Increased search 
• Efficiency 
• Reliability.

51© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	HYBRID APPROACH

© 2024 - Dr. Basit Qureshi 52



SYSTEM	ARCHITECTURE:	HYBRID MODEL
• Hybrid P2P/Client Server:

• A combination of peer-to-peer and 
client–server models.

• A common hybrid model is to have a 
central server that helps peers find each 
other

• There are a variety of hybrid models, all of 
which make trade-offs between the 
centralized functionality provided by a 
structured server/client network and the 
node equality afforded by the pure peer-
to-peer unstructured networks. 

• Currently, hybrid models have better 
performance than either pure 
unstructured networks or pure structured 
networks.

53© 2024 - Dr. Basit Qureshi

Shunzhi Wang, Zhanyou Ma, Rong Wang et al. Performance analysis of a queueing system based on 
working vacation with repairable fault in the P2P network, 21 September 2022, Supercomputing 
[https://doi.org/10.21203/rs.3.rs-1864515/v2]



SYSTEM	ARCHITECTURE:	HYBRID MODEL
• Benefits

• Efficient Data Retrieval
• Scalability
• Adaptability and Flexibility
• Fault Tolerance
• Load Balancing
• Dynamic Resource Discovery

• Challenges
• Complexity
• Overhead
• Consistency
• Increased Latency
• Resource Utilization
• Security and Privacy Concerns

54© 2024 - Dr. Basit Qureshi

Shunzhi Wang, Zhanyou Ma, Rong Wang et al. Performance analysis of a queueing system based on 
working vacation with repairable fault in the P2P network, 21 September 2022, Supercomputing 
[https://doi.org/10.21203/rs.3.rs-1864515/v2]



SYSTEM	ARCHITECTURE:	HYBRID MODEL
• Hybrid P2P-Client-

Srvr:
• Example: Spotify (before 

2014)

55© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	HYBRID MODEL
• Hybrid P2P-Client-

Srvr:
• Example: Bittorent

56© 2024 - Dr. Basit Qureshi
https://docs.btfs.io/v1.0/docs/what-is-btfs#architecture



SYSTEM	ARCHITECTURE:	HYBRID MODEL
• Hybrid P2P-Client-

Srvr:
• Example: Deep Torrent 

crawler

57© 2024 - Dr. Basit Qureshi

Rodríguez-Gómez, Rafael et al. “On Understanding the Existence of a Deep Torrent.” IEEE 
Communications Magazine 55 (2017): 64-69.



SYSTEM	ARCHITECTURE:	HYBRID MODEL
• Hybrid P2P-Client-

Srvr:
• Example: Bitcoin, 

Etherium Blockchain

58© 2024 - Dr. Basit Qureshi

Y. Shahsavari, K. Zhang and C. Talhi, "Performance Modeling and Analysis of the Bitcoin Inventory 
Protocol," 2019 IEEE International Conference on Decentralized Applications and Infrastructures 
(DAPPCON), Newark, CA, USA, 2019, pp. 79-88, doi: 10.1109/DAPPCON.2019.00019.



SYSTEM	ARCHITECTURE:	HYBRID MODEL
• Hybrid P2P-Client-Srvr:

• Other Examples: Gnutella, eDonkey, Kazaa, Napster, 
Skype etc

59© 2024 - Dr. Basit Qureshi



SYSTEM	ARCHITECTURE:	HYBRID MODEL
• Hybrid P2P-Client-

Srvr:
• Example: Bittorent

60© 2024 - Dr. Basit Qureshi
https://docs.btfs.io/v1.0/docs/what-is-btfs#architecture



DISTRIBUTED	SYSTEMS	SERVICES

© 2024 - Dr. Basit Qureshi 61



DISTRIBUTED	SYSTEMS	SERVICES
• A distributed system is a collection of services accessed via network 

interfaces

© 2024 - Dr. Basit Qureshi 62



DISTRIBUTED	SERVICES
• Serverless Computing: The rise of serverless computing, where developers 

can focus on writing code without worrying about infrastructure 
management.
• Edge Computing: Bringing computing resources closer to the data source, 

enabling faster processing and reduced latency.
• Container Orchestration: Simplifying the deployment and management of 

distributed services using container orchestration platforms like 
Kubernetes.

© 2024 - Dr. Basit Qureshi 63



DISTRIBUTED	SERVICES
• Serverless Computing:

• Depends on underlying physical servers, however there is no server hardware or 
operating system environment to manage for developers or IT engineers.

• Abstracts applications from the underlying server and operating system, serverless 
functions are easier to deploy and manage

• Event-driven computing; use resources as you go; deploy serverless functions and 
APIs

• More efficient than conventional applications that run constantly
• Auto-scaling enabled, cost-effective

© 2024 - Dr. Basit Qureshi 64



DISTRIBUTED	SERVICES
• Edge Computing:

• Moves some portion of storage and compute resources out of the central 
data center and closer to the source of the data itself.

• Compute, Store, Network, Service closer to the data-source.
• Lighter, faster, efficient, cheaper.
• Examples: Security system monitoring, IoT devices, Self-driving cars, 

Medical monitoring devices, Video conferencing etc.

© 2024 - Dr. Basit Qureshi 65



DISTRIBUTED	SERVICES
• Kubernetes and Container Orchestration

• A container is a standard unit of software that packages up code and all its 
dependencies so the application runs quickly and reliably from one computing unit

• Container orchestration automatically provisions, deploys, scales, and manages 
containerized applications without worrying about the underlying infrastructure. 

• Developers can implement container orchestration anywhere containers are, 
allowing them to automate the life cycle management of containers.

© 2024 - Dr. Basit Qureshi 66



SUMMARY
• Distributed Systems Themes
• Dist. Sys. Challenges
• Dist. Sys. Architecture

• Software Architecture
• Systems Architecture

• Client-server arch.
• P2P arch.
• Hybrid approach

• Distributed Services

© 2024 - Dr. Basit Qureshi 67


