DISTRIBUTED SYSTEMS
ARCHITECTURE

CS435 Distributed Systems
Basit Qureshi PhD, FHEA, SMIEEE, MACM

JUalw ol acoln

PRINCE SULTAN

W

https://www.drbasit.org/

7./

////////// /,

&

o

74

TOPICS

* Operating Systems, a quick review
* Distributed Systems Themes
* Dist. Sys. Challenges

* Dist. Sys. Architecture
e Software Architecture

e Systems Architecture

* Client-server arch.
e P2P arch.

* Hybrid approach
e Distributed Services

T

OPERATING SYSTEMS, A QUICK REVIEW

* Computer Organization

Von Neumann
Basic Structure

Memory

T 11, =

Arithmetic

Output

— . .
Control Logic Unit | |
Unit < 5 4

—

Processor Accumulator

: ////’/////// 4
/ %74//4/// /////
M

S

\ © 2024 - Dr. Basit Qureshi

7

N NN
\

A\

OPERATING SYSTEMS, A QUICK REVIEW

* Uni-Computer Operating Systems

* Application, Memory, Processor, File-system resources, all on one machine

© 2024 - Dr. Basit Qureshi

OS interface

System call |

No direct data exchange between modules

User mode

User Memory Process File module \
application module module
A || A A
Microkernel /
Hardware

Kernel mode

77

OPERATING SYSTEMS, A QUICK REVIEW
* Multi-Computer Operating System

* All computers run using the same OS.
* Memory shared between processors.

* Dist. Applications run sharing Memory and CPU resources
Machine A

Machine B Machine C
\
\ N L
\\ Distributed applications
\\ —1 1
\\§
\ Distributed operating system services
A
\\\ Kernel Kernel

Kernel
© 2024 - Dr. Basit Qures

Network

\

 Resources accessible via network.
* Hard to maintain a consistent view.

/////’////////’////' 4

L

AP

© 2024 - Dr. Basit Qureshi

OPERATING SYSTEMS, A QUICK REVIEW

* Network Operating Systems
Network File system mounting on individual machines.

Relatively primitive set of services provided (e.g. Printers)
* Configuration overhead/complexity

Machine A Machine B Machine C
Distributed applications
Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

Network

////////////////////
g

)

Z

7 e

% ,////////

Z

7

N\

H

OPERATING SYSTEMS, A QUICK REVIEW
* Middleware-based Operating Systems

* Middleware provides a set of services and communication protocols

* Abstracts the complexities of distributed computing, making it easier for developers
to design and implement distributed applications. E.g. Socket APIs

Machine A Machine B Machine C
| | | |
Distributed applications
| I | | I
Middleware services
Network OS Network OS Network OS

services services services

Kernel Kernel Kernel
© 2024 - Dr. Basit Qureshi

Network

OPERATING SYSTEMS, A QUICK REVIEW
* Comparing Operating Systems

///////////////// 4

7/
/%/////

7z

7/

, ///////////////

L

Distributed OS Network | Middleware-
Item 0s based OS
Multiproc. | Multicomp. ase
Degree of transparency Very High High Low High
Same OS on all nodes Yes Yes No No
Number of copies of OS 1 N N N
Ba5|s.for. Shared Messages Files Model specific
communication memory
Global,
Resource management | Global, central L Per node Per node
distributed
Scalability No Moderately Yes Varies
Openness Closed Closed Open Open

© 2024 - Dr. Basit Qureshi 10

DISTRIBUTED SYSTEM THEMES

4

7
o

DISTRIBUTED SYSTEM THEMES

* Distributed Systems are a collection of independent computers that
appears as a single system to the user(s)

* Independent = autonomous, self-contained
* Single system = user not aware of distribution
* GOALS
* Scaling
* Collaboration
* Latency
* Acessibility
* Availability
* Transparency

© 2024 - Dr. Basit Qureshi

11

N NN

7

//// ///

7 /;/x;////

~

7

1. SCALING

 Vertical Scaling (Powerful systems)

* Increases in processor performance have not been
keeping up with Moore’s Law since around 2005.

e Adding more processor cores helped improve
performance; but need to write multi-threaded

programs

* Intel Xeon 8490h 1.90GHz~3.50GHz 60Core/120Thread

Processor (15000 USD)

* Apple M3 Ultra 32-core CPU/ 80 Core GPU
* Nvidia Geforce RTX 4090 Ti 18,432 CUDA cores

* Horizontal Scaling

* Distributed load across more systems

* Pixar Movie Rendering: 2000 machines with 24000+ cores.

* Google: A single Google query uses 1,000 computers in
0.2 seconds to retrieve an answer

© 2024 - Dr. Basit Qureshi

42 Years of Microprocessor Trend Dala

N
e
"
-

-rik:'
10° % aats — Single-Thread
Performance _
w u’} - | (SpecINT x 10%)
K3 1” e sk
a;.w"*““-n e
o
4 . ’ﬂ-. “ ' Typical Power
10° . :. &'- v ,v,,\! " *g 7 (Watts)
-
> R Pl i) ey "! Number of
10 < . " S y ¢ :: | Logical Cores
10° »-‘s : . A * e -_Moo
1970 1980 1 990 2000 2010 2020

New plot a7 Aata cobecied lor 2000 2017 by K Rugg

Year
by M. M

12

\

%

2. COLLABORATION

* Collaborate
* Make content
* Social connectivity
* E-Commerce
* News & media

X Wi

\\
N\ © 2024 - Dr. Basit Qureshi

B YouTube

@ WhatsApp

NETFLIX

Microsoft Teams

@ Spotify

13

NN
NN

3. LATENCY

* Caching

* Keep the data close to where it is needed
* Replication

* Make multiple copies

* Caching vs. replication
* Caching: temporary copies of frequently accessed data closer to where it’s
needed

* Replication: multiple copies of data for increased fault tolerance

4

\\ apache a ™ I_
\\§ \\ I nlte (7— aWS cloudfront
?\\\\ - CLOUDFLARE

.

© 2024 - Dr. Basit Qureshi

14

//////////;Z

4. ACCESSIBILITY

* Distributed Systems are
accessible through
Systems, loT devices,
Smart-phones etc.

* |oT = Internet of Things
e 2023: 16.7 Billion devices

e Smart-Phones
e 2023: 6.2 Billion devices

7

W72

© 2024 - Dr. Basit Qureshi

ol)g 1IOT ANALYTICS Your Global loT Market Rescarch Partner

Global loT market forecast (in billions of connected loT devices)

NumBor of global 20w 10T coendctiond (rntalied Bite) in baillons

3 ”'7Connedivity type CAGR 21-22 CAGR 22-27

Aol vl Q470022

o Other %) Qm)
Wireless Neighborhood N
W Ares Networks (WnAN) S)
W Cellular $G loY 200%) (8%
Wired loT <> Qo%>
o WA (38%) %)
M Cellutar 10T (exch. $G, LPWA) C2%) (8%
e ey
Area Networks (WLAN) 1%, 26%)
Wireless Personal

0 Area Networks (WPAN)
2015 20160 20075 008 2019 20200 2021 20225 2023 20234 20254 226! 2020¢

(% e CAGR

o Q%) Q6%

W 4 G T B b e ey e e, Tl e, 0w, ety Lib s Cong et e T e 91 18 e ot Gy a we Bt o i\ S Pty et et g ot B Tl o i B W S oy $ St

AP0 NO) Wt Ay SRmat 4l S (8 A BB ML 80 VD el (o e her B M, 80, S UM Fuhden wnranatd a0d bt i B AT AN Been Do, Db, Wt ¥ wmir ALY eiten W0 st anated je
AN Cufon ram Vet 2 orge B, mah e W S O e by 1t e i Al gty ey SR ey rege
Towrne 1 Asihan Rusear h 2070 W wahime spbiniong of rnages bud i 1o s (Aatam wih 8 Lol b Ba irgaad gt and mpary sellete

-

of People (in billions)

!3 !E

-] @ [@ @ i

4R U Ha ElS

o~ w0 IS T~ =

2016 2017 2018 2019 2020 2021 2022 2023
@ # of Smartphone Users Global Population

15

7%

"~ 5.AVAILABILITY
e System Components Fail

 Computers, processes, disks, memory, data centers etc
* Replicas can take over
e Fault tolerance

requests _
> Active
* Identify & recover from component failures l upadatss
\ * Recoverability Standby
\ . . .
\§ e Software can restart and function — May involve restoring state
NN
\
\\\\
A
A\

requests

—ee
balancer

Active
/ $ 1 updates
Loz Active

\ '

updates
Active

/4////////////

2 i

& /7/////

7 e

7 /%/,////'////

6. TRANSPARENCY

* High level: hide distribution from users

* Low level: hide distribution from software
* Location transparency Users don’t care where resources are
* Migration transparency Resources move at will

* Replication transparency Users cannot tell whether there are copies of resources
* Concu rrency transparency Users share resources transparently

Parallelism tra NSParency Operations take place in parallel without user’s knowledge
Failure tra NSParency Lower-level software works around any failures — things just work

© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi 18

DISTRIBUTED SYSTEM CHALLENGES

DISTRIBUTED SYSTEM CHALLENGES

* Concurrency

() Latency

* Partial Failure

* Secu rlty

//////

7/ /4//%/4

Y
77

////////////

© 2024 - Dr. Basit Qureshi

///////////////// 4

/,/}////////

: ///////////////

Y L/

7,

/
7

* Concurrency

DISTRIBUTED SYSTEM CHALLENGES

* Lots of requests may occur at the same time
* Need to deal with concurrent requests

* Need to ensure consistency of all data

 Understand critical sections & mutual exclusion

* Beware: mutual exclusion (locking) can affect performance
e Caching and replication costs

* Complex; synchronization, message-delivery, check-sums etc

2%,
2,

/////////// /,

o

7)/

7

DISTRIBUTED SYSTEM CHALLENGES

* Latency

* Network delays

* Synchronous: Use time-stamps to determine time to respond

e Partial synchronous: Protocols operate correctly only if all messages are
received within some time.

* Asynchronous:

* Messages may take an unpredictable amount of time
* Lost or delayed?

* Re-transmission -> duplicate messages
* Mess up perception of time
* Message arrive in different order

° Caching: Keep data close to where it’s processed to maximize efficiency
* Memory vs. disk
e Local disk vs. remote server

« Remote memory vs. remote disk

#,

7 ////////// /,

7

74

Z

Y

7

DISTRIBUTED SYSTEM CHALLENGES

 Partial Failure

* In local systems, failure is usually total (all-or-nothing)

* In distributed systems, we get partial failure
* A component can fail while others continue to work
* Failure of a network link is indistinguishable from a remote server failure
* Send a request but don't get a response = what happened?

* No global state
* There is no global state that can be examined to determine errors

* There is no agent that can determine which components failed and inform
everyone else

* Need to ensure the state of the entire system is consistent after a failure

DISTRIBUTED SYSTEM CHALLENGES

* Security

* Traditionally managed by operating systems
* Users authenticate themselves to the system
e Each user has a unique user ID (UID)
* Access permissions = f(UID)
* Now applications must take responsibility for
* |dentification, Authentication, Access control, Encryption, tamper detection, Audit trail
* The environment
* Public networks, remotely-managed services, 3rd party services
* Trust: do you trust how the 3rd party services are written & managed?
* Some issues:
* Malicious interference, bad user input, impersonation of users & services
* Protocol attacks, input validation attacks, time-based attacks, replay attacks

Rely on cryptography (hashes, cryptography) for identity management, authentication,
encryption, tamper detection ... and also rely on good defensive programming!

© 2024 - Dr. Basit Qureshi

23

© 2024 - Dr. Basit Qureshi 24

ARCHITECTURE

48
2777
4[///

2,

DISTRIBUTED SYSTEMS ARCHITECTURE

\

Dist Sys Architecture

Software Architecture System Architecture

W2/ 777/
y ///////f/f/ﬂ

N

\Y

N

A\
\\\
e\
NN

N
NN N

.\ ©2024- Dr. Basit Qureshi 25

%

///M//ﬁ 4

w7 Z_

7/

i

SOFTWARE ARCHITECTURE

» “The logical organization of software components and their
interaction with other structures”

» Focuses entirely on “components”. Example: website front-end.

* Four common types
» Layered
° Data Centl‘ic
 Event based

778

SOFTWARE ARCHITECTURE

 Layered architecture

* Provides a modular approach to software
 Software components organized as layers
» Information flows through layers. E.g. a request

Layer N
goes from the top down, and the response goes .

Response Flow

%

from the bottom up. .
 Any layer can not directly communicate with i
\ another layer g Layer N-1
\ . : . o
§ * No intermediate layer can be skipped! g
\
§\§ Layer 2
\\

© 2024 - Dr. Basit Qureshi

P

.

N\
\ \\ N\

SOFTWARE ARCHITECTURE

 Layered architecture
« Advantage:

1. Each layer can be modified independently without affecting the whole
system.

« 2. Calls always follow a predetermined path and that each layer is simple to

replace or modify without affecting the architecture as a whole.

 This type of architecture is used in Open System Interconnection (OSI) model.

- In some cases, layered architecture is in cross-layer coordination. In a cross-
layer, any adjacent layer can be skipped until it fulfils the request and provides
better performance results.

Request Flow Request Flow Request Flow
Layer N Layer N-1 Layer 1
Response Flow
© 2024 - Dr. Basit Qureshi

Response Flow Response Flow

28

SOFTWARE ARCHITECTURE

* Object based architecture

« Components are treated as objects which
convey information to each other

. / ‘
« Contains an arrangement of loosely coupled ‘

objects.

 Objects can interact with each other through
method calls e.g. Remote Procedure Call Mathod call

(RPC) mechanism or Remote Method
Invocation (RMI) mechanism.

« Examples: REST API Calls, Web Services, Java ‘ - ‘

’ /4

. %/ -

RMI

Z

iy W

© 2024 - Dr. Basit Qureshi

29

7%

o
7 i

LN %

N

SOFTWARE ARCHITECTURE
 Data centric architecture
« Works on a central data repository, either
actively or passively
 All the components are connected to this data
repository.
* Producer-consumer communication model:
* Producer produces items to the common
data repository
» Consumer (individual) can request data

from the common data repository
« Example: Web-based E-commerce systems

© 2024 - Dr. Basit Qureshi

| componenta |
N\

Persistent Data Space

|

[Component B

30

NN

////////////////,//

4/ b //'I//l/////

SOFTWARE ARCHITECTURE

e Event based architecture

 Similar to Data centered architecture (replaces
Data with events)

« Events are present at the center in the Event bus

and delivered to the required component
whenever needed

 When an event occurs, the system, as well as the

receiver, get notified. Data, URLs etc are
transmitted through events.

« Components are loosely coupled. i.e., it’s easy to
add, remove, and modify components.

- Example: Enterprise services buses; akka.io

© 2024 - Dr. Basit Qureshi

A& akka

31

A

SYSTEM ARCHITECTURE

 “The placement of components of a distributed system across
multiple machines”
» Three possible types

 Centralized: Client-Server

* De-centralized: Peer-to-Peer
« Hybrid

© 2024 - Dr. Basit Qureshi 33

SYSTEM ARCHITECTURE: CLIENT-SERVER
MODEL

i

/ /,//1/////

/4 /////M/

SYSTEM ARCHITECTURE: CLIENT-SERVER MODEL

* Centralized / Client-Server model

« Every node is connected to a central coordination system

 Client - This is the first process that issues a request to the second process i.e. the server.
« Server — This is the second process that receives the request, carries it out, and sends a

reply to the client.

© 2024 - Dr. Basit Qureshi

The Client-Server Model

34

7
#

SYSTEM ARCHITECTURE: CLIENT-SERVER MODEL

 Client-server interaction/request-reply behavior.
 Server: a process that implements a service (exp: file system service, database service).
 Client: a process that requests a service from a server

« Communication between a client and a server can be:

« Connectionless protocol [if reliable connection available].
« Connection oriented protocol [otherwise, e.g. TCP/IP].

4

/ //////////

p

77, ///I’

/,///

Wait for result
Client

Reply
Server

© 2024 - Dr. Basit Qureshi

Provide Service Time

35

SYSTEM ARCHITECTURE: CLIENT-SERVER MODEL

 2-tier Client server architecture
» The servers need not know about clients
* The clients must know the identity of servers
« Mapping of processors to processes is not necessarily 1

* Thin Client Model

 Server: Application processing and data management
 Client: Provide interface of the application

e Thick Client Model

 Server: Data management only
 Client: Complex data processing and interface

User interface business rules data access

Client

Network
User interface business rules data access Data Server

2 - Tier Client Server Architecture

\\\S
N\ © 2024 - Dr. Basit Qureshi

36

SYSTEM ARCHITECTURE: CLIENT-SERVER MODEL

e n-tier Client server architecture

« Multi tier allows separate tier for a functionality of an application

User interface

 3-tier is common with Web/App-server, DB-server and Client-browser
(presentation)

Wait for result

///////////////// A4

Reque.st Return
operation esult
Application Wait for data

server
\\§\\\ Request data Return data
\

\ Database

\\ server

© 2024 - Dr. Basit Qureshi

37

Z;

SYSTEM ARCHITECTURE: CLIENT-SERVER MODEL

e n-tier Client server architecture

Client machine

‘ User interfacel
\ b

’ User interface User interface User interface User interface
Application Application Application
\ $ —————————————— $ 3 e Database
§\ ///’—\\ ~~~~~~~~~~~~ $ ______ { ,///)
\\ __,/’ ______________ N
0\ User interface “5 0 T A S
\ 23 e
§\ Application Application Application . / i
§\\ Database Database Database Database [Database |
N\
\\\\ Server machine
\ (a) (b) (c) (d)

© 2024 - Dr. Basit Qureshi

38

 3-tier arch. example:

* Internet Search
Engine

© 2024 - Dr. Basit Qureshi

User Interface |«

User
Interface
Level e e -l v . e e [|
HTML Generator
Processing
Level Query Generator
Ranking
Algorithm
Database g
Queries

Data Level
Database

Internet search engine into three different layers

~ SYSTEM ARCHITECTURE: CLIENT-SERVER MODEL

HTML page
containing List

Ranked List of
pages

Web Page
Information

39

X

SYSTEM ARCHITECTURE: CLIENT-SERVER MODEL

 n-tier arch. example:

« An MS Azure
application using
multiple Virtual
Machines

DMZ Web tier Business tier Data tier

El-

SQL Server
(primary)

Load : Load Load

Load
Internet balancer : balancer balancer balancer
NVA M
: SQL Server
oo (secondary)
L r -
@ f
"o B
: i M
zure Portal :
DevOps .| Bastion

Virtual network

AzureBastionSubnet |

Y\ © 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi 41

SYSTEM ARCHITECTURE: P2P MODEL

7/
7

* De-Centralized / Peer to Peer
model
 No central control

* A node can either act as a client or
server at any given time once it
joins the network

E\ » Each node in the network has the
\\ same set of responsibilities and
§ capabilities.
\ . .
\ » Design of a P2P Dist Sys conforms
A\ C .
E\x to Application and Network overlay
§§ requirements to keep track of all
\ nodes

© 2024 - Dr. Basit Qureshi

" SYSTEM ARCHITECTURE: P2P MODEL

ez Objects

Shareable

€

App

Peer 4

42

%

///M//ﬁ 4

/ ///////////////

SYSTEM ARCHITECTURE: P2P MODEL

 Benefits:
« Autonomy: Each node is independent of the other.
* Less costly: No need to buy an expensive server.
* No network manager

« Adding nodes is easy: Adding, deleting, and repairing nodes in this
network is easy.

* Less network traffic than in a client/ server network.

 Challenges:
* Less secure
« Data is vulnerable. Stored in various nodes.
 Slow performance

%,
/%

7 gy

7.

7).

7

///’,/

Z

7 Lt

%

Z

7/

SYSTEM ARCHITECTURE: P2P MODEL

» Organization

. . . Peer 1

* The nodes (i.e., processes) are organized in an overlay oot Shareable Peer 2
that ad}_leres to a spe_cific, deterministic topology: a Sp&/f Objects Ye
ring, a binary tree, a grid, etc. o o/ y 00

* Deterministic schemes can be deployed for routing >
messages between processes. Used to efficiently look
up data.

* Data item is uniquely associated with a key, and this
key is subsequently used as an index. 2P

* The peer-to-peer system as a whole is now responsible
for storing (key, value) pairs.

* Each node is assigned an identifier, and each node is

responsible for storing data associated with a specific 5D
subset of keys. 00
00

Peer 4

© 2024 - Dr. Basit Qureshi

SYSTEM ARCHITECTURE: P2P MODEL

* Organization:
« Structured P2P: Nodes adhere to a predefined distributed data structure.
« Unstructured P2P: Networks feature nodes that randomly select their neighbors.

« Hybrid P2P: Systems combine elements of both, with certain nodes assigned unique,
organized functions.

© 2024 - Dr. Basit Qureshi

45

4,
74

///////////////// o

74
g/’

Z

7 /
7
///

74

i

SYSTEM ARCHITECTURE: P2P MODEL

e Structured P2P:

« Typically maintains a Distributed Hash Table (DHT)

« Each peer is responsible for a specific part of the 0 Actual node
content in the network. o

« Network use hash functions and assign values to every (14; (131415 {01} (2
content and every peer in the network / \

* A global protocol determines which peer is responsible M X
for which content.

 Whenever a peer wants to search for data, it uses the L (e

global protocol to determine the peers responsible for | Associated A
the data and then directs the search towards the 11 Catatieys L5
responsible peers. .. /

{10} 567) 6}

‘~_ o?®
o s
v
I ¥ .
' . .
y ' , .
s P ——¢ \
’
e g
=) 3
. ‘.
Sz out

© 2024 - Dr. Basit Qureshi 46

" SYSTEM ARCHITECTURE: P2P MODEL

Structured P2P:

1. Node Identification and Routing:
« Each node in the network is assigned a unique identifier using a hash function.
» This identifier is typically a large number or a string of characters.
» A consistent hash function is used to map both data and node identifiers to the same address

space.
§ 2. Distributed Hash Table (DHT):
§ DHT is a distributed database that maps keys to values, where keys and values are typically
\ associated with nodes and data items.
\§\ - The DHT is divided into buckets or partitions, and each node is responsible for a specific range of
§\ keys.
§\ 3. Routing Algorithm:
\§\§ » Use a routing algorithm in the network to communicate.
§\§ « E.g.Chord, Kademlia, and Pastry.

77,

© 2024 - Dr. Basit Qureshi

SYSTEM ARCHITECTURE: P2P MODEL

Structured P2P:

4. Joining and Leaving the Network:
« Each new node is given a unique identifier and integrated into the DHT.
» New nodes get redistributed responsibilities among existing nodes to maintain load balance.
 When a node leaves or fails, its responsibilities need to be transferred to other nodes.

5. Data Storage and Retrieval:
» Data is typically stored in the network using its hash value as a key.

§ » To retrieve data, a lookup in the DHT using the hash of the desired key.
i\\\\§ 6. Fault Tolerance:
\\\\\ « Redundancy, replication, or backup mechanisms are employed.
\§\ 7. Security and Privacy:
\\§ » Encrypted communication, authentication, and authorization mechanisms.
§}§ « Ensure the integrity and confidentiality of data and communications.
‘i§\

© 2024 - Dr. Basit Qureshi

A\

S,

4/ W

/ /,«%///////////M

SYSTEM ARCHITECTURE: P2P MODEL

 Un-structured P2P:

» Lack a predefined organization or topology
for how nodes are connected.

* Do not rely on distributed hash table (DHT).

» More flexible and dynamic.

» They are often used for applications where
the focus is on simplicity, ease of

deployment, and adaptability.

© 2024 - Dr. Basit Qureshi

(¢) Gnutella/Overnet/eDonkey2000

49

i

77

Un-structured P2P:
1.Node Discovery:

SYSTEM ARCHITECTURE: P2P MODEL

» Nodes join the network without adhering to a specific organizational structure.
» Nodes may join and leave the network at any time.

» There's no central authority or fixed rules for how nodes connect.
\ 2.0verlay Network:

\\

\\

» Some form of discovery mechanism is used to find and connect to other nodes.
» An overlay network is formed where nodes are connected to each other.
y
\ « No organization; connections between nodes are established based on various criteria
\ 3.Search and Communication:
\\ » Often rely on random or heuristic-based search methods.
§\\\§ * A node broadcasts a query to its neighbors or all nodes.
§§\ » Keeps propagating packets until the resource is found or a timeout occurs.
N
\
© 2024 - Dr. Basit Qureshi

50

//////’////////f////’ 4

Y]

i

\

SYSTEM ARCHITECTURE: P2P MODEL

4. Data Storage and Retrieval:

Allow nodes to store and retrieve data without a predefined organization.
Nodes may replicate or cache data locally.

Searches for data are often performed by flooding the network with queries.

5. Scalability and Adaptability:

» Often more scalable and adaptable than structured systems.
» Nodes can be added or removed without affecting the overall structure of the network.
* Quick to adapt to changes in the network, such as in file-sharing applications.
6. Challenges:
 Scalability issues
 Increased search
 Efficiency
» Reliability.

© 2024 - Dr. Basit Qureshi

Efficiency of data retrieval may vary, and there could be redundancy in the storage of data.

51

© 2024 - Dr. Basit Qureshi 52

SYSTEM ARCHITECTURE: HYBRID APPROACH

N\

" SYSTEM ARCHITECTURE: HYBRID MODEL
« Hybrid P2P/Client Server:

« A combination of peer-to-peer and
client-server models.

.

’ ~
@ cluster AN
\
\

\

luster @ \
4
’
‘
i

node equality afforded by the pure peer-
to-peer unstructured networks.

 Currently, hybrid models have better @ e

« A common hybrid model is to have a - ' P 4'//" |
central server that helps peers find each @«——» ——
other , ’ P \@

« There are a variety of hybrid models, all of et i SN o
which make trade-offs between the S T
centralized functionality provided by a \ < g @
structured server/client network and the g —Ny T T

cluster Sl '. v \ i

i

///////////// /////////////// 7

i
;
;

. ’

N cluster ’
N ’
. ’
. .

§ performance than either pure
§\\\ unstructured networks or pure structured o
\\ SN ON
§\ networks. N
\
\\\\ Shunzhi Wang, Zhanyou Ma, Rong Wang et al. Performance analysis of a queueing system based on

working vacation with repairable fault in the P2P network, 21 September 2022, Supercomputing
[https://doi.org/10.21203/rs.3.rs-1864515/v2]

© 2024 - Dr. Basit Qureshi 53

/////////////

W/

W/

74

7,

7

7,
g

7

77

v/

4/

&/ b

SYSTEM ARCHITECTURE: HYBRID MODEL

e Benefits
« Efficient Data Retrieval

« Scalability $ \
 Adaptability and Flexibility .: lm\ g L
« Fault Tolerance S— ,:
 Load Balancing J % \
* Dynamic Resource Discovery . -

 Challenges @

- - -~
, N
. .
4 cluster N
’ \
- A
’ o A\
i ~ \
i N \
\
! Y
! \ I
\ 1
\ ;
, I
\
.
~ \ ,
. ’
1 /
] ,
.
\ -
- - ~ [-
- :

’ g
’
’
’

A 4

~
~

~

-

« Complexity \ <\‘\ ,
e Overhead ~' @A/ J / J

|
St
i
~
I ~
I; .
¥, N
A
\
< G >
’ \
s \
\
.

« Consistency L e / R \ .'

* Increased Latency R / | $
o1 . \‘\‘ _,-” N cluster s

« Resource Utilization - R L B

 Security and Privacy Concerns e
‘g &

Shunzhi Wang, Zhanyou Ma, Rong Wang et al. Performance analysis of a queueing system based on
working vacation with repairable fault in the P2P network, 21 September 2022, Supercomputing
[https://doi.org/10.21203/rs.3.rs-1864515/v2]

© 2024 - Dr. Basit Qureshi 54

T

W A7/ 7 7 s

SYSTEM ARCHITECTURE: HYBRID MODEL

« Hybrid P2P-Client-
Srvr:

« Example: Spotify (before
2014)

9078 -
S oti W 2.4m tracks . -" \

'\ ©2024-Dr. Basit Qureshi
NN

' 9078

2.6m tracks

55

%

~ SYSTEM ARCHITECTURE: HYBRID MODEL

» Hybrid P2P-Client-
Srvr:
« Example: Bittorent

BTFS Network Architecture

/W/

L 4//!/

Soter (TRON-backed
repair hosts)

https://docs.btfs.io/v1.0/docs/what-is-btfs#architecture
\ © 2024 - Dr. Basit Qureshi

56

///////////////

ot

Z

77 //I//I/‘é

SYSTEM ARCHITECTURE: HYBRID MODEL

» Hybrid P2P-Client-
Srvr:

« Example: Deep Torrent
crawler

© 2024 - Dr. Basit Qureshi

BitTorrent
network

Torrent-discovery sites
N\

ainline monitor

I
Node

crawler

Message
sniffer

! G

]
(s

Passive
search

Active
search

Not present
in crawling

Figure 1. Functional architecture of the Deep Torrent crawler.

Rodriguez-Gémez, Rafael et al. “On Understanding the Existence of a Deep Torrent.” IEEE
Communications Magazine 55 (2017): 64-69.

57

N\ NN

" SYSTEM ARCHITECTURE: HYBRID MODEL
» Hybrid P2P-Client-

Srvr . Blockchain data structure Peer-to-peer overlay network
* Example: Bitcoin, h P N \
Etherium Blockchain Slock o
(Genesis Block n-1 Block n .
Block) “ep g
S0BTC Transaction D Transaction G
Transaction £ Transaction H
Block Propagation
Wallet

Y. Shahsavari, K. Zhang and C. Talhi, "Performance Modeling and Analysis of the Bitcoin Inventory
Protocol," 2079 IEEE International Conference on Decentralized Applications and Infrastructures
(DAPPCON), Newark, CA, USA, 2019, pp. 79-88, doi: 10.1109/DAPPCON.2019.00019.

© 2024 - Dr. Basit Qureshi 58

SYSTEM ARCHITECTURE: HYBRID MODEL
« Hybrid P2P-Client-Srvr:

« Other Examples: Gnutella, eDonkey, Kazaa, Napster,
Skype etc

(®) eDonkey2000: DO VOO — g @ n u teIIa

@ ;; @ 0 -4 Support the donkey. Register today. f{e()onkey

(DAL P puvmucs of am
connecting dsconnected options help h = I-{'"“" oy

Q)’ P {’D soxch Q traralers @J shared

ey = B o~ ~ TR
12) meda () corslogs (O friends :ﬁ(j\ RS @ servers

Dowricads: O Sources: 0

§ Nare Kom Soe Trondfered Speed (KB/s) Tme Frogress

\ \\ o @ 9
\} d B S e B T i | s Y v
\\\\\ Upicads: O Queve Lengh: 0 '—;‘;E_'.m S
A\

larre User Soeed (KB3) Trarsfered I —— - v — mm s""n pp— il

\ = | 3 ey @
=
-

\§§ Upload Queue net loaded .
\\ ON) Users: 0 Fles: Unknown Testing Frewal Dowry 00 _ s

’ . Qoll - &
- N - o —~r T~ 2
¥ 7ot er o VT b s a: |
© 2024 - Dr. Basit Qureshi [- .

%

~ SYSTEM ARCHITECTURE: HYBRID MODEL

» Hybrid P2P-Client-
Srvr:
« Example: Bittorent

BTFS Network Architecture

/W/

L 4//!/

Soter (TRON-backed
repair hosts)

https://docs.btfs.io/v1.0/docs/what-is-btfs#architecture
\ © 2024 - Dr. Basit Qureshi

60

© 2024 - Dr. Basit Qureshi 61

DISTRIBUTED SYSTEMS SERVICES

~ DISTRIBUTED SYSTEMS SERVICES

* A distributed system is a collection of services accessed via network
interfaces

Data storage
service

Data

\
§ normalization
\ service
i\\\ Data storage
\ §\ service
\\\\
Y
\ Data analytics
\ service
A\
i\
§ Client access Web client

\ service service

© 2024 - Dr. Basit Qureshi

JITET7

7

7 L

77

LA

&

i
o ’ V7 /

DISTRIBUTED SERVICES

 Serverless Computing: The rise of serverless computing, where developers
can focus on writing code without worrying about infrastructure
management.

* Edge Computing: Bringing computing resources closer to the data source,
enabling faster processing and reduced latency.

e Container Orchestration: Simplifying the deployment and management of
distributed services using container orchestration platforms like
Kubernetes.

© 2024 - Dr. Basit Qureshi 63

N\

" DISTRIBUTED SERVICES

* Serverless Computing:

* Depends on underlying physical servers, however there is no server hardware or
operating system environment to manage for developers or IT engineers.

* Abstracts applications from the underlying server and operating system, serverless
functions are easier to deploy and manage

* Event-driven computing; use resources as you go; deploy serverless functions and
APIs

* More efficient than conventional applications that run constantly

Google Cloud

§\\ e Auto-scaling enabled, cost-effective
\
3\ Azure
\ S
\ erverless
x§ C .
3 AWS Lambda omputing

© 2024 - Dr. Basit Qureshi

S,

i

7 /%//////////M

DISTRIBUTED SERVICES
* Edge Computing:

* Moves some portion of storage and compute resources out of the central
data center and closer to the source of the data itself.

« Compute, Store, Network, Service closer to the data-source.
* Lighter, faster, efficient, cheaper.

« Examples: Security system monitoring, loT devices, Self-driving cars,
Medical monitoring devices, Video conferencing etc.

4 CLOUDFLARE

© 2024 - Dr. Basit Qureshi

65

M7

w2z

DISTRIBUTED SERVICES

e Kubernetes and Container Orchestration

* A container is a standard unit of software that packages up code and all its
dependencies so the application runs quickly and reliably from one computing unit

e Container orchestration automatically provisions, deploys, scales, and manages
containerized applications without worrying about the underlying infrastructure.

* Developers can implement container orchestration anywhere containers are,
allowing them to automate the life cycle management of containers.

0 |
Ve 2
R | v | M IR

© 2024 - Dr. Basit Qureshi

66

/,//////
7
/(;”///4

//////////////// 4

7

7,

////
//////////////

LI

SUMMARY

* Distributed Systems Themes
* Dist. Sys. Challenges

* Dist. Sys. Architecture
» Software Architecture
e Systems Architecture

* Client-server arch.
e P2P arch.

* Hybrid approach
e Distributed Services

