
PARALLEL	PROCESSING
CS435 Distributed Systems
Basit Qureshi PhD, FHEA, SMIEEE, MACM
https://www.drbasit.org/

Continued

https://www.drbasit.org/

TOPICS
• Fork Join with Divide and Conquer
• Speedup and Amdahl’s Law
• MapReduce for distributed parallel processing

Most of the content in these set of slides is based on “A Sophomoric Introduction to Shared-Memory
Parallelism and Concurrency”, Dan Grossman, online notes, version Feb 2012 2

FORK	JOIN	WITH	DIVIDE	AND	CONQUER

3

KEY	CONCEPTS:	WORK	AND	SPAN
Analyzing parallel algorithms requires considering the full range of processors available
• We parameterize this by letting TP be the running time if P processors are available

• We then calculate two extremes: work and span

Work: T1 à How long using only 1 processor
• Just "sequentialize" the recursive forking

Span: T∞ à How long using infinity processors
• The longest dependence-chain

• Example: O(log n) for summing an array
• Notice that having > n/2 processors is no additional help

• Also called "critical path length" or "computational depth"

4

THE	DAG
A program execution using fork and join can be seen as a DAG
• Nodes: Pieces of work
• Edges: Source must finish before destination starts

A fork "ends a node" and makes two outgoing edges
• New thread
• Continuation of current thread

A join "ends a node" and makes a node with two incoming edges
• Node just ended
• Last node of thread joined on

5

OUR	SIMPLE	EXAMPLES
fork and join are very flexible, but divide-and-conquer use them in a
very basic way:
• A tree on top of an upside-down tree

base cases

divide

conquer

6

WHAT	ELSE	LOOKS	LIKE	THIS?
Summing an array went from O(n) sequential to O(log n) parallel (assuming a lot of
processors and very large n)

Anything that can use results from two halves and merge them in O(1) time has the same
properties and exponential speed-up (in theory)

+ + + + + + + +
+ + + +

+ +
+

7

EXAMPLES
• Finding Maximum or minimum element in array with large n.

• Finding a value (e.g. 17) in a array with large n

• Counts (e.g., # of strings that start with a vowel)
• Base case?

8

MORE	INTERESTING	DAGS?
Of course, the DAGs are not always so simple (and neither are
the related parallel problems)

Example:
• Suppose combining two results might be expensive enough that we want

to parallelize each one
• Parallelize the base case itself??

9

REDUCTIONS
Such computations of this simple form are common enough to have a name: reductions
(or reduces?)

• Produce single answer from collection via an associative operator
• Examples: max, count, leftmost, rightmost, sum, …

• Recursive results don’t have to be single numbers or strings and can be arrays or
objects with fields
• Example: Histogram of test results

• But some things are inherently sequential
• How we process arr[i] may depend entirely on the result of processing arr[i-1]

10

MAPS	AND	DATA	PARALLELISM
A map operates on each element of a collection independently to create a new
collection of the same size
• No combining results
• For arrays, this is so trivial some hardware has direct support (often in graphics

cards)

Canonical example: Vector addition

int[] vector_add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
result = new int[arr1.length];
FORALL(i=0; i < arr1.length; i++) {
result[i] = arr1[i] + arr2[i];

}
return result;

}

11

MAPS	IN	FORKJOIN FRAMEWORK
class VecAdd extends RecursiveAction {
int lo; int hi; int[] res; int[] arr1; int[] arr2;
VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
protected void compute(){
if(hi – lo < SEQUENTIAL_CUTOFF) {

for(int i=lo; i < hi; i++)
res[i] = arr1[i] + arr2[i];

} else {
int mid = (hi+lo)/2;
VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
left.fork();
right.compute();
left.join();

}
}

}
static final ForkJoinPool fjPool = new ForkJoinPool();
int[] add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
int[] ans = new int[arr1.length];
fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
return ans;

}

12

MAPS	AND	REDUCTIONS
Maps and reductions are the "workhorses" of parallel programming
• By far the two most important and common patterns

We often use maps and reductions to describe parallel algorithms
• Programming them then becomes "trivial" with a little practice (like how for-loops are second-

nature to you)

13

DIGRESSION:	MAPREDUCE ON	CLUSTERS
You may have heard of Google’s "map/reduce"
• Or the open-source version Hadoop

Perform maps/reduces on data using many machines
• The system takes care of distributing the data and managing fault tolerance
• You just write code to map one element and reduce elements to a combined result

Separates how to do recursive divide-and-conquer from what computation to perform
• Old idea in higher-order functional programming transferred to large-scale distributed computing

• Complementary approach to database declarative queries

14

MAPS	AND	REDUCTIONS	ON	TREES
Work just fine on balanced trees
• Divide-and-conquer each child

• Example:
Finding the minimum element in an unsorted but balanced binary tree takes O(log n) time
given enough processors

How do you implement the sequential cut-off?
• Each node stores number-of-descendants (easy to maintain)
• Or approximate it (e.g., AVL tree height)

Parallelism also correct for unbalanced trees but you obviously do not get much
speed-up

15

LINKED	LISTS
Can you parallelize maps or reduces over linked lists?
• Example: Increment all elements of a linked list

• Example: Sum all elements of a linked list

Once again, data structures matter!

For parallelism, balanced trees generally better than lists so that we can get to all the
data exponentially faster O(log n) vs. O(n)
• Trees have the same flexibility as lists compared to arrays (i.e., no shifting for insert or remove)

b c d e f

front back

16

ANALYZING	ALGORITHMS
Like all algorithms, parallel algorithms should be:
• Correct
• Efficient

For our algorithms so far, their correctness is "obvious" so we’ll focus on efficiency
• Want asymptotic bounds
• Want to analyze the algorithm without regard to a specific number of processors
• The key "magic" of the ForkJoin Framework is getting expected run-time performance

asymptotically optimal for the available number of processors
• Ergo we analyze algorithms assuming this guarantee

17

CONNECTING	TO	PERFORMANCE
Recall: TP = run time if P processors are available

We can also think of this in terms of the program's DAG

Work = T1 = sum of run-time of all nodes in the DAG
• Note: costs are on the nodes not the edges
• That lonely processor does everything
• Any topological sort is a legal execution
• O(n) for simple maps and reductions

Span = T∞ = run-time of most-expensive path in DAG
• Note: costs are on the nodes not the edges
• Our infinite army can do everything that is ready to be done but still has to wait for earlier results
• O(log n) for simple maps and reductions

18

SOME	MORE	TERMS
Speed-up on P processors: T1 / TP

Perfect linear speed-up: If speed-up is P as we vary P
• Means we get full benefit for each additional processor as in doubling P, halves running time
• This is usually our goal
• Hard to get (sometimes impossible) in practice

Parallelism is the maximum possible speed-up: T1/T∞
• At some point, adding processors won’t help

Parallel algorithms is about decreasing span without increasing
work too much

19

OPTIMAL	TP:	THANKS	FORKJOIN LIBRARY
So we know T1 and T∞ but we want TP (e.g., P=4)

Ignoring memory-hierarchy issues (caching), TP cannot be
• Less than T1 / P why not?
• Less than T∞ why not?

So an asymptotically optimal execution would be:
TP = O((T1 / P) + T∞)

First term dominates for small P, second for large P

The ForkJoin Framework gives an expected-time guarantee of asymptotically optimal!
• Expected time because it flips coins when scheduling
• How? We will discuss later in process scheduling!
• Guarantee requires a few assumptions about your code…

20

DIVISION	OF	RESPONSIBILITY
Our job as ForkJoin Framework users:

• Pick a good parallel algorithm and implement it
• Its execution creates a DAG of things to do
• Make all the nodes small(ish) and approximately equal amount of work

The framework-writer’s job:
• Assign work to available processors to avoid idling
• Keep constant factors low
• Give the expected-time optimal guarantee assuming framework-user did his/her job

TP = O((T1 / P) + T∞)

21

EXAMPLES:	TP		=		O((T1 /	P)	+	T∞)
Algorithms seen so far (e.g., sum an array):
If T1 = O(n) and T∞= O(log n)
à TP = O(n/P + log n)

Suppose instead:
If T1 = O(n2) and T∞= O(n)
à TP = O(n2/P + n)

Of course, these expectations ignore any overhead or memory issues

22

AMDAHL’S	LAW

23

AMDAHL’S	LAW
In practice, much of our programming typically has parts that parallelize well
• Maps/reductions over arrays and trees

And also parts that don’t parallelize at all
• Reading a linked list
• Getting/loading input
• Doing computations based on previous step

24

AMDAHL’S	LAW
Let work (time to run on 1 processor) be 1 unit time

If S is the portion of execution that cannot be parallelized (Serial), then we can define T1
as:

T1 = S + (1-S)/1 = 1

If we get perfect linear speedup on the parallel portion, then we can define TP as:
TP = S + (1-S)/P

Thus, the overall speedup with P processors is (Amdahl’s Law):
T1 / TP = 1 / (S + (1-S)/P)

And the parallelism (infinite processors) is:
T1 / T∞ = 1 / S

25

AMDAHL’S	LAW
Amdahl’s Law: T1 / TP = 1 / (S + (1-S)/P)

T1 / T∞ = 1 / S

Suppose 33% of a program is sequential:
• Then a billion processors won’t give a speedup over 3

Suppose you miss the good old days (1980-2005) where 12 years or so was long enough to get
100x speedup
• Now suppose in 12 years, clock speed is the same but you get 256 processors instead of just 1
• For the 256 cores to gain ≥100x speedup, we need

100 £ 1 / (S + (1-S)/256)
Which means S £ .0061 or 99.4% of the algorithm must be perfectly parallelizable!!

26

A	PLOT	YOU	HAVE	TO	SEE

0

50

100

150

200

250

0.00% 5.00% 10.00% 15.00% 20.00% 25.00%
Percentage of Code that is Sequential

1 Processor 4 Processors 16 Processors 64 Processors 256 Processors

Speedup for 1, 4, 16, 64, and 256 Processors
T1 / TP = 1 / (S + (1-S)/P)

27

A	PLOT	YOU	HAVE	TO	SEE	(ZOOMED	IN)

0

20

40

60

80

100

0.00% 2.00% 4.00% 6.00% 8.00% 10.00%
Percentage of Code that is Sequential

1 Processor 4 Processors 16 Processors 64 Processors 256 Processors

Speedup for 1, 4, 16, 64, and 256 Processors
T1 / TP = 1 / (S + (1-S)/P)

28

ALL	IS	NOT	LOST
Amdahl’s Law is a bummer!
• Doesn’t mean additional processors are worthless!!

We can always search for new parallel algorithms
• We will see that some tasks may seem inherently sequential but can be parallelized

We can also change the problems we’re trying to solve or pursue new problems
• Example: Video games/CGI use parallelism
• But not for rendering 10-year-old graphics faster
• They are rendering more beautiful(?) monsters

29

A	FINAL	WORD	ON	MOORE	AND	AMDAHL
Although we call both of their work laws, they are very
different entities

Very different but incredibly important in the design of
computer systems

Amdahl’s Law is a mathematical theorem
§ Diminishing returns of adding more processors

Moore’s "Law" is an observation about the progress of
the semiconductor industry:
§ Transistor density doubles every ≈18 months

30

MAP	REDUCE	FRAMEWORK

31

Most of the content in these set of slides is based on Paul Krzyzanowski Distributed Systems course
taught at Rutgers University

WHAT	ABOUT	DISTRIBUTED	PARALLEL	PROCESSING?
Suppose you need to perform some computation on a huge amount of data (1 petabyte
= 1 million Gibabyte)
• Even small amounts of processing can add up

• Break the workload in small chunks. Each chunk takes 1 MB.
• Assume each subtask takes 100ms for 1MB chunk
• 1 billion chunks!
• 100ms per data item × 1 billion items = 1157 days of computation!

32

WHAT	ABOUT	DISTRIBUTED	PARALLEL	PROCESSING?
• Suppose you need to perform some computation on a huge amount of data (1

petabyte = 1 million Gibabyte)
• Solution?
• Break the work up so lots of computers can work on just parts of the data

• Split the workload among 10,000 computers ⇒ 2.7 hours of computation

• Put the data on a file server?
• More data than you can fit on one system
• Disk bandwidth will be an issue

• if you read an SSD at 500 MB/s, it becomes a bottleneck on the network

• Shared bandwidth
• 10,000 systems will get data at < 5KB/s

• We need to distribute the workload and the data

33

WHAT	ABOUT	DISTRIBUTED	PARALLEL	PROCESSING?
• Work with a Distributed Systems to solve the problem!
• Issues!!!
• Split the data in smaller chunks (Shards)
• Allocate chunks to processes
• Remotely control the processes to run on the servers
• Partition the work among processes
• Assign processes to servers, allocate data chunks
• Lookout for communication problems
• Lookout for failure
• Manage and re-start failed processes
• Process and collect the results from different processes running on different servers

• Map Reduce!
• A workhorse for distributed batch processing

34

Co
mp
lex
!

MAPREDUCE
“MapReduce is a programming model and an associated implementation for processing

and generating large data sets”
• Programming model
• Abstractions to express simple computations

• Library
• Takes care of the gory stuff: Parallelization, Fault Tolerance, Data Distribution and

Load Balancing

35

MAPREDUCE
• Master/worker approach
• Master
• initializes data set and splits it according to # of workers
• Sends each worker a sub-array of data
• Receives the results from each worker

• Worker
• Receives a sub-array from master
• Performs processing
• Sends results to master

36

MAPREDUCE
• Created by Google in 2004 Jeffrey Dean and Sanjay Ghemawat
• Inspired by LISP
• Map(function, set of values)
• Applies function to each value in the set
(map 'length '(() (a) (a b) (a b c))) ⇒ (0 1 2 3)

• Reduce(function, set of values)
• Combines all the values using a binary function (e.g., +)
(reduce #'+ '(1 2 3 4 5)) ⇒ 15

37

https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-
osdi04.pdf

MAPREDUCE
• Framework for parallel computing
• Programmers get simple API
• Don’t have to worry about handling
• Parallelization
• Data distribution
• Load balancing
• Fault tolerance
• Monitoring

User can process huge amounts of data (terabytes and petabytes) on
thousands of processors

38

MAPREDUCE
• Who works with MapReduce?
• Google
• Apache Hadoop MapReduce
• Most common Open source implementation

• Amazon Elastic: Runs Hadoop on Amazon EC2
• Microsoft Azure HDInsight
• Google Cloud MapReduce for App Engine

39

MAPREDUCE
• Map:
• Grab the relevant data from the source
• User function gets called for each chunk of input
• Spits out (key, value) pairs

• Reduce:
• Aggregate the results
• User function gets called for each unique key with all values corresponding to that

key

40

MAP	REDUCE:	7-STEP	PROCESS 41

MAPREDUCE
Step 1: Split
• Split input files into chunks (shards/splits). Size depends on the file system

(typically 128MB)

42

MAPREDUCE
Step 2: Fork processes
• Start up many copies of the program on a cluster of machines
• One master: scheduler & coordinator
• Lots of workers

• Tasks
• Map: each works on a shard
• Reduce: each works on intermediate files
• Partitions, Maps and Reduce tasks are defined by the users

43

MAPREDUCE
Step 3: Each Map task
• Reads contents of the input shard
• Parses key/value pairs out of the input data
• Passes each pair to a user-defined map function
• Produces intermediate key/value pairs
• These are buffered in memory

• MapReduce supports multiple types of files stored in various locations

44

MAPREDUCE
Step 4: Create Intermediate files

1. Intermediate key/value pairs produced by the user’s map function buffered in
memory and are periodically written to the local disk
• Partitioned into R regions by a partitioning function

2. Notifies master when complete
• Passes locations of intermediate data to the master
• Master forwards these locations to the reduce worker

3. Map key-value data will be processed by Reduce workers
• The user’s Reduce function will be called once per unique key generated by

Map.
4. We first need to group all the (key, value) data by keys and decide which Reduce

worker processes which set of keys
• The Reduce worker will later sort the values within each keys

45

Default function to identify a reduce worker: hash(key) mod R

MAPREDUCE
Step 5: Reduce: Shuffle
• Reduce worker is notified by the master about the location of intermediate files for

its partition
• Shuffle: Uses RPCs to read the data from the local disks of the map workers
• Sort: When the reduce worker gets all the (key, value) data for its partition from

all workers
• It sorts the data by the keys
• All occurrences of the same key are grouped together

46

MAPREDUCE
Step 6: Reduce: Sort
• The sort phase grouped data by keys
• This makes it easy to identify all the values from all the map workers that are

associated with each key
• The user’s Reduce function is given the key and the set of intermediate values for

that key

• The output of the Reduce function is appended to an output file

47

< key, (value1, value2, value3, value4, …) >

MAPREDUCE
Step 7: Return
• When all map and reduce tasks have completed, the master wakes up the user

program
• The MapReduce call in the user program returns and the program can resume

execution
• Output of MapReduce is available in R output files

48

MAP	REDUCE:	EXECUTION	FLOW	EXAMPLE 49

MAPREDUCE:	EXAMPLES
WordCount
Count the # occurrences of each word in a collection of documents

50

MAPREDUCE:	EXAMPLES

map(String input_key, String input_value):
// input_key: document name
// input_value: document contents
for each word w in input_value:
EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
// output_key: a word
// output_values: a list of counts
int result = 0;
for each v in intermediate_values:
result += ParseInt(v);

Emit(AsString(result));

<“Sam”,	“1”>,	<“Apple”,	“1”>,	<“Sam”,	“1”>,	
<“Mom”,	“1”>,	<“Sam”,	“1”>,	<“Mom”,	“1”>,	

<“Sam”	,	[“1”,”1”,”1”]>,	<“Apple”	,	[“1”]>,	
<“Mom”	,	[“1”,	“1”]>

“3”
“1”
“2”

51

MAPREDUCE:	EXAMPLES
Webcrawlers
• Search for words in lots of documents
• Map: emit a line if it matches a given pattern
• Reduce: just copy the intermediate data to the output

• Find the count of each URL in web logs
• Map: process logs of web page access; output
• Reduce: add all values for the same URL

• Find the frequency of each URL in web logs
• Run 1: just count total URLs
• Run 2: just like URL count but now we stored total_urls

• Find where page links come from
• Map: output for each link to target in a page source
• Reduce: concatenate the list of all source URLs associated with a target Output

52

MAPREDUCE:	EXAMPLES
Other examples:
• Stock performance summary – Find average daily gain of each company

from 1/1/2010 – 12/31/2020
• Average salaries in regions – Show zip codes where average salaries are in

the ranges:(1) < $100K (2) $100K … $500K (3) > $500K

53

MAPREDUCE:	EXAMPLES
Other examples:
• Social Media: Companies like Facebook and Twitter employ MapReduce for tasks

such as user analytics, trend analysis, and recommendation systems.

• Genomic Data Processing: The genomics field utilizes MapReduce to process and
analyze large volumes of genetic data for research and healthcare purposes.

• Log Processing: Log files generated by systems, servers, and applications can be
efficiently processed and analyzed using MapReduce for debugging and monitoring.

• Natural Language Processing: In NLP tasks, MapReduce is used to process and
analyze text data, such as sentiment analysis, topic modeling, and language
translation.

54

MAPREDUCE
Benefits
• Fault Tolerance
• Master pings each worker periodically
• If no response is received within a certain time, the worker is marked as failed
• Map or reduce tasks given to this worker are reset back to the initial state and

rescheduled for other workers

• Locality
• Input and Output data comes from the filesystem
• MapReduce (often) runs on chunkservers
• Keep computation close to the files if possible

55

MAPREDUCE
In practice
• MapReduce was used to process webpage data collected by Google's

crawlers. Determine the site's PageRank.
• It took 8 hours for a run!!
• Results were moved to search servers
• This was done continuously
• Now: Can’t wait for 8 hours delay. The dynamic web changes!

• Most data is not stored as simple files
• B-trees, tables, SQL databases, memory-mapped key-values

• We don't usually use textual data: it's slow & hard to parse
• Most I/O gets encoded with Protocol Buffers

56

MAPREDUCE
• Batch-oriented
• Not suited for near-real-time processes
• Cannot start a new phase until the previous has completed
• Reduce cannot start until all Map workers have completed

• Suffers from “stragglers”
• workers that take too long (or fail)

• This was done continuously
• MapReduce is still useful but there are also other options

57

SUMMARY
• Fork Join with Divide and Conquer
• Speedup and Amdahl’s Law
• MapReduce for distributed parallel processing

58

