
COMMUNICATION
CS435 Distributed Systems
Basit Qureshi PhD, FHEA, SMIEEE, MACM
https://www.drbasit.org/

https://www.drbasit.org/

TOPICS
• Communication in Distributed Systems: An overview
• Networking: A quick Review
• TCP and UDP Sockets

2

WHY	COMMUNICATION

3

WHY	COMMUNICATION
1.Coordination:

• Distributed systems consist of multiple independent components (nodes, servers, or processes)
• Components work together to achieve a common goal.
• Communication facilitates coordination and synchronization among these components.

2.Data Exchange:
• Data needs to be shared among different components in REAL-TIME to perform tasks or make decisions.
• Communication enables the seamless exchange of data between nodes.

3.Fault Tolerance:
• Distributed systems are designed to be resilient to failures, such as node crashes or network issues.
• Communication helps in fault detection, isolation, and recovery.
• Nodes update their status and share information about the health of the system.

4

WHY	COMMUNICATION
4. Consistency and Replication

• Update replicas and synchronize data to ensure that all nodes in the system have a consistent view.

5. Load Balancing
• Tasks can be distributed among nodes to ensure optimal resource utilization and performance.

6. Scalability:
• Horizontal scaling by adding more nodes to the network.
• Communication enables these new nodes to join the system, share the workload, and contribute to

the overall capacity and performance.

7. Efficiency:
• Effective communication can optimize resource usage and reduce unnecessary duplication of

efforts.
• Nodes can collaborate efficiently, sharing resources and information to achieve common goals.

5

WHY	COMMUNICATION
• Communication is an integral aspect of distributed systems, facilitating coordination,

data exchange, fault tolerance, consistency, scalability, and adaptability.
• It ensures that the distributed components can work together effectively to achieve the

system's goals in a collaborative and coordinated manner.

6

WHY	COMMUNICATION
• The system is structured as a group of processes (objects), called servers, that deliver

services to clients.

7

COMMUNICATION	IN	DIST SYS
• Communication between distributed objects by means of two models:

• Remote Method Invocation (RMI)
• Remote Procedure Call (RPC)

• RMI, as well as RPC, are implemented on top of request and reply primitives.
• Request and reply are implemented on top of the network protocol (e.g. TCP or UDP in

case of the internet)

8

NETWORKING:	A	QUICK	REVIEW

9

NETWORKING:	A	QUICK	REVIEW
• Data is broken down into tiny packets.
• Packets are sent over the Internet
• The Internet is a interconnect of networking devices (Routers, Switches,

Servers, Computers etc)

10

NETWORKING:	A	QUICK	REVIEW
• The ISO Open Systems

Interconnection (OSI) model.
(1970s)

11

NETWORKING:	A	QUICK	REVIEW
• 1. Physical Layer
• The physical layer is responsible for movements of individual bits from

one hop (node) to the next.

12

NETWORKING:	A	QUICK	REVIEW
• 2. Data Link Layer
• The data link layer is responsible for moving frames from one hop

(node) to the next.

13

NETWORKING:	A	QUICK	REVIEW

14

NETWORKING:	A	QUICK	REVIEW
• Network Layer
• The network layer is responsible for the delivery of individual packets

from the source host to the destination host.

15

NETWORKING:	A	QUICK	REVIEW

16

NETWORKING:	A	QUICK	REVIEW
• Transport Layer
• The transport layer is responsible for the delivery of a message from

one process to another.

17

NETWORKING:	A	QUICK	REVIEW

18

NETWORKING:	A	QUICK	REVIEW
• Transport Layer
• The session layer is responsible for dialog control and synchronization.

19

NETWORKING:	A	QUICK	REVIEW
• Presentation Layer
• The presentation layer is responsible for translation, compression, and

encryption.

20

NETWORKING:	A	QUICK	REVIEW
• Application Layer
• The application layer is responsible for providing services to the user.

21

NETWORKING:	A	QUICK	REVIEW
• Summary of OSI Model

22

NETWORKING:	A	QUICK	REVIEW
• The original TCP/IP

protocol suite was
defined as having
four layers:
• host-to-network,
• internet,
• transport, and
• application.

23

NETWORKING:	A	QUICK	REVIEW
• IP (Internet Protocol) is

responsible for transporting
packets between computers.
• Enables applications to

communicate with each other by
providing logical communication
channels so that related messages
can be abstracted as a single stream
at an application.

24

• Each network endpoint has a unique IP address
• IPv4: 32-bit address www.psu.edu.sa = 128.6.46.88
• IPv6: 128-bit address www.google.com =

2607:f8b0:4004:811::2004
• Data is broken into packets

• Source & destination IP addresses
• Header checksum
• Data IP gives us machine-to-machine communication

NETWORKING:	A	QUICK	REVIEW
• TCP (Transmission Control

Protocol) provides reliable byte
stream (connection-oriented)
service.
• Ensures that packets arrive at the

application in order and lost or
corrupt packets are retransmitted.
• Keeps track of the destination so the

application can have the illusion of a
connected data stream.

25

NETWORKING:	A	QUICK	REVIEW
• TCP (Transmission Control Protocol) upside vs downside
• Upsides

• In-order, reliable byte streams
• Congestion control (plays nice in sharing the network), flow control (avoids queue overflow)

• Downsides
• Storing & managing state in the operating system

• Sequence numbers, Buffering out-of-order data, Acknowledgments
• Significant kernel memory use when lots of connections

• Congestion control
• Slows down transmission but doesn’t always accurately reflect network congestion (based

on packet loss)
• Recovery

• All state is lost if a system goes down – connections will need to be re-established
• Increased latency

• Data may not be immediately transmitted or presented to the receiving app

26

NETWORKING:	A	QUICK	REVIEW
• UDP (User Datagram Protocol)

provides datagram (connectionless)
service.
• While UDP drops packets with

corrupted data, it does not ensure in-
order delivery or reliable delivery.

27

Port numbers in both TCP and UDP are used to allow the operating system to direct the data to the
appropriate application (or, more precisely, to the communication endpoint, or socket, that is
associated with the communication stream).

NETWORKING:	A	QUICK	REVIEW
• UDP (User Datagram Protocol) upside vs downside
• Upsides

• Fewer kernel resources
• No connection setup overhead
• useful data can be sent with 1st packet
• Received data immediately sent & delivered to the application
• No delay in sending messages
• No state recovery
• traffic can be easily redirected to a standby system

• Downsides
• Delivery & message order not guaranteed
• Usually perfect on local area networks; less reliable on wide area networks

28

COMMUNICATION	TERMINOLOGY
• Persistent Communications:

• Once sent, the “sender” can stop executing. The “receiver” need not be operational at this time –
the communications system buffers the message as required (until it can be delivered).

• Transient Communications:
• The message is only stored as long as the “sender” and “receiver” are executing. If problems occur,

the message is simply discarded …

• Asynchronous Communications:
• A sender continues with other work immediately upon sending a message to the receiver.

• Synchronous Communications:
• A sender blocks, waiting for a reply from the receiver before doing any other work. (This tends to

be the default model for RPC/RMI technologies).

29

COMMUNICATION	TERMINOLOGY

30

a) Persistent asynchronous communication. b) Persistent synchronous communication.

COMMUNICATION	TERMINOLOGY

31

c) Transient asynchronous communication. d) Receipt-based transient synchronous communication.

COMMUNICATION	TERMINOLOGY

32

e) Delivery-based transient synchronous
communication at message delivery.

f) Response-based transient synchronous communication.

SOCKETS

33

SOCKETS
• A socket refers to a software endpoint that establishes communication

between two processes on a network.
• Sockets enable processes running on different devices to communicate

with each other by providing a standard interface for sending and receiving
data.
• Sockets are a fundamental concept in network programming and are

widely used for building Distributed systems applications.

34

JAVA	SOCKET	PROGRAMMING

JAVA	SOCKETS	PROGRAMMING
• The package java.net provides support for sockets programming (and

more).

• Typically you import everything defined in this package with:

import java.net.*;

Java Socket Programming 36

SOCKET	CLASS

• Corresponds to active TCP sockets only!
• client sockets
• socket returned by accept();

• Passive sockets are supported by a different class:
• ServerSocket

• UDP sockets are supported by
• DatagramSocket

Java Socket Programming 37

JAVA TCP SOCKETS
• java.net.Socket

• Implements client sockets (also called just “sockets”).
• An endpoint for communication between two machines.
• Constructor and Methods

• Socket(String host, int port): Creates a stream socket and connects it to the specified port number
on the named host.

• InputStream getInputStream()
• OutputStream getOutputStream()
• close()

• java.net.ServerSocket
• Implements server sockets.
• Waits for requests to come in over the network.
• Performs some operation based on the request.
• Constructor and Methods

• ServerSocket(int port)
• Socket Accept(): Listens for a connection to be made to this socket and accepts it. This method

blocks until a connection is made.

Java Socket Programming 38

SOCKETS

Client socket, welcoming socket (passive) and connection socket (active)

Java Socket Programming 39

SOCKET	CONSTRUCTORS

• Constructor creates a TCP connection to a named TCP
server.
• There are a number of constructors:

Socket(InetAddress server, int port);

Socket(InetAddress server, int port,
InetAddress local, int localport);

Socket(String hostname, int port);

Java Socket Programming 40

INPUTSTREAM
// reads some number of bytes and

// puts in buffer array b

int read(byte[] b);

// reads up to len bytes

int read(byte[] b, int off, int len);

Both methods can throw IOException.

Both return –1 on EOF.

Java Socket Programming 41

// writes b.length bytes

void write(byte[] b);

// writes len bytes starting

// at offset off

void write(byte[] b, int off, int len);

Both methods can throw IOException.

OUTPUTSTREAM

SERVERSOCKET CLASS	(TCP	PASSIVE	SOCKET)
• Constructors:

ServerSocket(int port);

ServerSocket(int port, int backlog);

ServerSocket(int port, int backlog, InetAddress bindAddr);

Java Socket Programming 42

SOCKET PROGRAMMING WITH TCP

Example client-server app:
• client reads line from standard

input (inFromUser stream) ,
sends to server via socket
(outToServer stream)

• server reads line from socket
• server converts line to

uppercase, sends back to client
• client reads, prints modified line

from socket (inFromServer
stream)

ou
tT

oS
er

ve
r

to network from network

in
F

ro
m

S
er

ve
r

in
F

ro
m

U
se

r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Input stream:
sequence of bytes
into processoutput stream:

sequence of bytes
out of process

Client
process

client TCP
socket

Java Socket Programming

43

CLIENT/SERVER SOCKET INTERACTION: TCP
44

TCPCLIENT.JAVA
package sockets;

import java.io.*;

import java.net.*;

import java.util.Scanner;

class TCPClient {

public static void main(String [] args) throws Exception{

String Str;

String modifiedSentence;

Scanner In = new Scanner(System.in);

Socket cs = new Socket("hostname", 6789);

DataOutputStream outToServer = new DataOutputStream(cs.getOutputStream());

InputStreamReader StreamIn = new InputStreamReader(cs.getInputStream());

BufferedReader inFromServer = new BufferedReader(StreamIn);

Str = In.nextLine();

//send Str to server

outToServer.writeBytes(Str + '\n');

//Listen to server response

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

cs.close();

}

}

TCPSERVER.JAVA
package sockets;

import java.io.*;

import java.net.*;

public class TCPServer {

public static void main(String [] args) throws Exception {

String Str;

String UpperCase;

ServerSocket s = new ServerSocket(6789);

while(true) {

Socket cs = s.accept();

InputStreamReader StreamIn = new InputStreamReader(cs.getInputStream());

BufferedReader in = new BufferedReader(StreamIn);

DataOutputStream outToClient = new DataOutputStream(cs.getOutputStream());

//read input stream into Str

Str = in.readLine();

UpperCase = Str.toUpperCase() + '\n’;

//write string to stream

outToClient.writeBytes(UpperCase);

}

}

}

UDP	SOCKETS

• DatagramSocket class

• DatagramPacket class needed to specify the payload
• incoming or outgoing

Java Socket Programming 47

SOCKET PROGRAMMING WITH UDP

• UDP
• Connectionless and unreliable service.
• There isn’t an initial handshaking phase.
• Doesn’t have a pipe.
• transmitted data may be received out of order, or lost

• Socket Programming with UDP
• No need for a welcoming socket.
• No streams are attached to the sockets.
• the sending hosts creates “packets” by attaching the IP destination

address and port number to each batch of bytes.
• The receiving process must unravel to received packet to obtain the

packet’s information bytes.

Java Socket Programming 48

JAVA UDP SOCKETS
• In Package java.net
• java.net.DatagramSocket
• A socket for sending and receiving datagram packets.
• Constructor and Methods

• DatagramSocket(int port): Constructs a datagram socket and binds it to the specified port on the local
host machine.

• void receive(DatagramPacket p)
• void send(DatagramPacket p)
• void close()

Java Socket Programming 49

DATAGRAMSOCKET	CONSTRUCTORS

DatagramSocket();

DatagramSocket(int port);

DatagramSocket(int port, InetAddress a);

All can throw SocketException or SecurityException

Java Socket Programming 50

EXAMPLE: JAVA CLIENT (UDP)

Java Socket Programming

51

CLIENT/SERVER SOCKET INTERACTION: UDP

Java Socket Programming

UDPCLIENT.JAVA
import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{
BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();
InetAddress IPAddress =

InetAddress.getByName("hostname");
byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];
String sentence = inFromUser.readLine();
sendData = sentence.getBytes();

UDPCLIENT.JAVA
DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length,
IPAddress, 9876);
clientSocket.send(sendPacket);
DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);
clientSocket.receive(receivePacket);
String modifiedSentence =

new String(receivePacket.getData());
System.out.println("FROM SERVER:" + modifiedSentence);

clientSocket.close();
}

}

Java Socket Programming 54

UDPSERVER.JAVA
import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
{

DatagramSocket serverSocket = new
DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];
while(true)
{
DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);
serverSocket.receive(receivePacket);
String sentence = new String(receivePacket.getData());

SUMMARY
• In distributed systems, multiple components interact across networks, requiring effective

communication to coordinate their actions and ensure coherent behavior.

• Communication facilitates fault detection and recovery mechanisms. Nodes need to exchange
information to detect failures, redistribute tasks, and maintain system resilience.

• Communication enables the synchronization of data and state across distributed nodes, ensuring that all
components have consistent views of the system, critical for maintaining integrity and correctness.

• Network protocols are essential for communication

• Sockets enable TCP/UDP communication
• RPC/MPI facilitate reliable dist sys communication (next lecture)

56

