
REPLICATION & FAULT
TOLERANCE
CS435 Distributed Systems

Basit Qureshi PhD, FHEA, SMIEEE, MACM
https://www.drbasit.org/

https://www.drbasit.org/

TOPICS

• The two generals problem

• Byzantine Generals problem

• Failure model

• Fault tolerance and availability

• Replication

• Ordering

2© 2024 - Dr. Basit Qureshi

THE 2 GENERALS PROBLEM

3© 2024 - Dr. Basit Qureshi

THE 2 GENERALS PROBLEM

• The Two Generals'
Problem is a thought
experiment and
theoretical problem in
Dist. Systems.

• The city’s defenses are
strong, and if only one of the
two armies attacks, the army
will be defeated.

• However, if both armies
attack at the same time,
they will successfully capture
the city.

4© 2024 - Dr. Basit Qureshi

https://finematics.com/two-generals-problem/

THE 2 GENERALS PROBLEM

• Need to coordinate
attack

• Communicate by
sending a messenger
through enemy territory.

• Agree on a time to
launch an attack.

• Messenger could be
captured!

5© 2024 - Dr. Basit Qureshi

https://finematics.com/two-generals-problem/

THE 2 GENERALS PROBLEM

• Communicate by
sending a messenger
through enemy territory.

• Agree on a time to
launch an attack

• Messenger could be
captured!

6© 2024 - Dr. Basit Qureshi

THE 2 GENERALS PROBLEM

PROBLEM

• General1 sends a message.
Messenger is captured->
Message Not received.

• General1 sends a message.
General2 receives the
message. On the way back,
the Messenger is captured ->
Not received.

• Cannot confirm attack, unless
messenger reaches General1.

7© 2024 - Dr. Basit Qureshi

THE 2 GENERALS PROBLEM

SOLUTION?

• OPTION 1: General 1 always attacks, even if no response is received?
• Send lots of messengers to increase probability that one will get through

• If all are captured, general 2 does not know about the attack, so general 1
loses

• OPTION 2: General 1 only attacks if positive response from general 2 is
received?

• Now general 1 is safe BUT general 2 knows that general 1 will only attack if
general 2’s response gets through

• Now general 2 is in the same situation as general 1 in option 1

8© 2024 - Dr. Basit Qureshi

THE 2 GENERALS PROBLEM

The problem is that no matter how many messages are exchanged,
neither general can ever be certain that the other army will also turn up

at the same time.

Repeated sequence of back-and-forth acknowledgements can build up
but the generals cannot reach certainty by exchanging any finite
number of messages.

9© 2024 - Dr. Basit Qureshi

THE 2 GENERALS PROBLEM

An analogy: Ordering food using a food-delivery app

• Customer Orders food

• The bank charges payment

• The restaurant dispatches food

10© 2024 - Dr. Basit Qureshi

Restaurant Bank outcome

Doesnot dispatch food Does not charge Nothing delivered

Dispatches food Does not charge Restaurant looses money

Doesnot dispatch food Charges Customer complains

Dispatches food Charges Everyone is happy

THE BYZANTINE GENERALS PROBLEM

11© 2024 - Dr. Basit Qureshi

THE BYZANTINE GENERALS PROBLEM

• A game theory problem: How to decentralized parties arrive at a
consensus without a trusted central party?

• Similar to Two Generals' Problem

12© 2024 - Dr. Basit Qureshi

Differences

• 3 or more armies wanting to capture a city

• Generals communicate through messengers

• We assume messengers cannot be captured

• Problem: Some generals can be traitors

https://dltlabs.medium.com/the-byzantine-generals-problem-8552e24abe02

THE BYZANTINE GENERALS PROBLEM

• Generals behavior
• A “honest” general colludes with other generals to attack the city

• A “traitor” general deliberately misleads and confuses others

• 3 generals
• Gen1 to Gen2 and Gen3: attack

• Gen2 to Gen3: retreat!

13© 2024 - Dr. Basit Qureshi

Gen2: Traitor
Gen3: Which message to trust?

THE BYZANTINE GENERALS PROBLEM

• Generals behavior
• A “honest” general colludes with other generals to attack the city

• A “traitor” general deliberately misleads and confuses others

• 3 generals
• Gen1 to Gen3: attack

• Gen1 to Gen2: retreat!

• Gen2 to Gen3: retreat!

14© 2024 - Dr. Basit Qureshi

Gen1: Traitor
Gen3: Which message to trust?

THE BYZANTINE GENERALS PROBLEM

• Honest generals do not know which generals are traitors

• Traitor generals can collude to secretly coordinate actions

• Don’t know if honest generals are “honest”; they can be
controlled by the adversary!

• So who to Trust??

15© 2024 - Dr. Basit Qureshi

THE BYZANTINE GENERALS PROBLEM

• In Dist Systems, there are complex trust relationships. To
understand, lets use an analogy:

• Online shopping
• Customer trusts Online shop and shares credit card information

• Customer trusts Online shop to deliver items

• Online shop trusts the payment service to complete the payment

• Online shop trusts the delivery to deliver products

• Payment service trusts the customer to pay dues

• Payment service trusts the online shop to complete payments

16© 2024 - Dr. Basit Qureshi

THE BYZANTINE GENERALS PROBLEM

• Dis-trust?

• Online shopping
• Customer uses stolen Credit cards to pay for Online shop

• Customer suspects Online shop will deliver wrong items

• Online shop payments are declined by the payment service

• Delivery company does not deliver products

• Payment service declines payment by the customer

17© 2024 - Dr. Basit Qureshi

THE BYZANTINE GENERALS PROBLEM

• In distributed systems, some systems explicitly deal with the
possibility that some nodes may be controlled by a malicious
actor, and such systems are called Byzantine fault tolerant.

• Popular with Blockchain and cryptocurrencies

18© 2024 - Dr. Basit Qureshi

FAILURE MODEL

19© 2024 - Dr. Basit Qureshi

FAILURE MODEL

• When designing a distributed algorithm, a system model is how
we specify our assumptions about what faults may occur.

• Failure model:

1. Network failure (e.g. loss etc)

2. Node behavior (crashes, slow etc)

3. Timing (e.g. latency, etc)

20© 2024 - Dr. Basit Qureshi

FAILURE MODEL

• Networks are NOT reliable

• Common problems:
• Configuration errors

• Shark bites! Line damage

• Hardware failure

• Intrusions

• Power loss

• Traffic spikes

• Cellular (WAN) failure

• Government restrictions (5G banned?)

21© 2024 - Dr. Basit Qureshi

FAILURE MODEL

• Networks failure model

• Communication modes: point-to-point, unicast, multicast,
broadcast communication.

• Lets assume, we mostly use point-to-point communication
between two nodes

• Reliable link: Perfect links, messages are received 100% guaranteed.

• Fair-loss link: Message may be lost, but can be duplicated, re-ordered.
We keep re-trying until all messages eventually get through

• Arbitrary link: A malicious adversary interferes with the messages (e.g.
spoofing, replay etc).

22© 2024 - Dr. Basit Qureshi

We always assume that Network partitions can occur

FAILURE MODEL

• Node behavior model

• A node in a distributed system exhibits these behavior
• Crash-stop: A node is faulty if it crashes. After crashing it stops

executing forever.

• Crash-recovery: A node may crash at any moment losing all of its
memory. A restart is possible, however all memory operations are lost.
Local disk storage survives the crash.

• Byzantine: A node is faulty if it does not follow algorithm/rules (faulty,
malicious).

23© 2024 - Dr. Basit Qureshi

A node that is not faulty is “Correct”

FAILURE MODEL

• Timing (Synchrony) model

• We assume one of the following for network and node behavior
• Synchronous: Messages are delivered within an upper bound time

frame. Node execute the tasks/algorithm with a known speed.

• Partial-Synchronous: The system is asynchronous for a short/finite (but
unknown) periods of time. It is synchronous otherwise.

• Asynchronous: Messages can be delayed. Nodes can “pause”. No
guarantees to deliver messages at all.

24© 2024 - Dr. Basit Qureshi

FAILURE MODEL

• Fault tolerant distributed systems need address:

• Networks failure
• Reliable link, Fair-loss link, Arbitrary link

• Node behavior
• Crash-stop, Crash-recovery, Byzantine

• Timing (Synchrony)
• Synchronous, Partial-Synchronous, Asynchronous

25© 2024 - Dr. Basit Qureshi

FAULT TOLERANCE AND AVAILABILITY

26© 2024 - Dr. Basit Qureshi

FAULT TOLERANCE AND AVAILABILITY

• Availability
• Online store wants to sell products 24/7

• Service unavailability = LOSS of money

• Availability = uptime = % of time service is functional
• “Two nines” = 99% up = down 3.7 days/year

• “Three nines” = 99.9% up = down 8.8 hours/year

• “Four nines” = 99.99% up = down 53 minutes/year

• “Five nines” = 99.999% up = down 5.3 minutes/year

27© 2024 - Dr. Basit Qureshi

Service-Level Objective (SLO): e.g. “99.9% of requests in a day get a response in 200 ms”
Service-Level Agreement (SLA): contract specifying some SLO, penalties for violation

FAULT TOLERANCE AND AVAILABILITY

• Case-study: A complete History of Amazon AWS outages

• A good resource / time-line for AWS service failures/outages

28© 2024 - Dr. Basit Qureshi

https://awsmaniac.com/aws-outages/

FAULT TOLERANCE AND AVAILABILITY

• Achieving High Availability => Fault tolerance

• Failure: system as a whole isn’t working

• Fault: some part of the system isn’t working
• Node fault: crash (crash-stop/crash-recovery), Byzantine?

• Network fault: dropping or significantly delaying messages

• Fault tolerance:
• System as a whole continues working, despite faults (up to some maximum

number of faults)

• Single point of failure (SPOF):
• Node/network link whose fault leads to failure

29© 2024 - Dr. Basit Qureshi

FAULT TOLERANCE AND AVAILABILITY

• Failure detection

• Goal: Detect failure before it happens!

• Problem: Cannot tell the difference between crashed node,
temporarily unresponsive node, lost message, and delayed message

30© 2024 - Dr. Basit Qureshi

FAULT TOLERANCE AND AVAILABILITY

• Failure detection

• Synchronous systems: Perfect timeout-based failure detector
program can exist only in a synchronous crash-stop system with
reliable links.

• Partial-Synchronous systems:
• Temporarily label a node “crashed”, even though it is “correct”

• Temporarily label a node “correct”, even though it is “crashed”

• Eventually label a node “crashed”, if and only if, it is “crashed”

• Detection may not be immediate, and may require various timeouts

31© 2024 - Dr. Basit Qureshi

The additional cost of achieving higher availability exceeds the cost of occasional downtime.
So accepting a certain amount of downtime can be economically acceptable?!!?

REPLICATION

32© 2024 - Dr. Basit Qureshi

REPLICATION

• Replication = An object has identical copies, each maintained
by a separate server

• Copies are called “replicas”

• Why replication?
• Fault-tolerance: With k replicas of each object, can tolerate failure of any (k-1)

servers in the system

• Load balancing: Spread read/write operations out over the k replicas => load
lowered by a factor of k compared to a single replica

• Replication => Higher Availability

33© 2024 - Dr. Basit Qureshi

REPLICATION

▪ Replication is necessary for:

1. Improving performance

• A client can access nearby replicated copies and save latency

34© 2024 - Dr. Basit Qureshi

REPLICATION

▪ Replication is necessary for:

2. Increasing the availability of services

• Replication can mask failures such as server crashes and network
disconnection

35© 2024 - Dr. Basit Qureshi

REPLICATION

▪ Replication is necessary for:

3. Enhancing the scalability of systems

• Requests to data can be distributed across many servers, which
contain replicated copies of the data

36© 2024 - Dr. Basit Qureshi

REPLICATION

▪ Replication is necessary for:

4.Securing against malicious attacks

• Even if some replicas are malicious, security of data can be
guaranteed by relying on replicated copies at non-compromised
servers

37© 2024 - Dr. Basit Qureshi

REPLICATION

Easy to implement. Main Challenge: Consistency!

• Server-side replication comes with a cost, which is the necessity for
maintaining consistency (or more precisely consistent ordering of updates)

• Strict Consistency

• Loose Consistency

© 2024 - Dr. Basit Qureshi 38

REPLICATION

Strict Consistency

© 2024 - Dr. Basit Qureshi 39

REPLICATION

Loose Consistency

© 2024 - Dr. Basit Qureshi 40

REPLICATION

• Maintaining consistency should balance between the strictness of consistency versus
efficiency (or performance)

• Good-enough consistency depends on your application

© 2024 - Dr. Basit Qureshi 41

ORDERING

42© 2024 - Dr. Basit Qureshi

ORDERING

• A consistency model is a contract between:
• The process that wants to use the data
• The data-store

• Two types
• Data-Centric: How updates are propagated across the

replicas to keep them consistent
• Client-Centric: Clients connect to different replicas at

different times. They ensure that whenever a client
connects to a replica, the replica is brought up to date with
the replica that the client accessed previously

43© 2024 - Dr. Basit Qureshi

ORDERING

Consistent Ordering of Operations

• We need to express the semantics of parallel accesses when shared
data are replicated

• Before updates at replicas are committed, all replicas shall reach an
agreement on a global ordering of the updates

• That is, replicas in shared data-stores should agree on a consistent ordering of
updates

• What consistent ordering of updates can replicas agree on?

44© 2024 - Dr. Basit Qureshi

ORDERING

Three major types of orderings:

• Total Ordering

• Sequential Ordering

• Causal Ordering

45© 2024 - Dr. Basit Qureshi

ORDERING

• Total Ordering

• If process Pi sends a message mi and Pj
sends mj, and if one correct process delivers
mi before mj then every other correct
process delivers mi before mj

46© 2024 - Dr. Basit Qureshi

Example Ex1,
if P1 issues the operation m(1,1): x=x+1; and
If P3 issues m(3,1): print(x); and
P1 or P2 or P3 delivers m(3,1) before m(1,1)
Then, at all replicas P1, P2, P3 the following order of
operations are executed

print(x);

x=x+1;

ORDERING

• Sequential Ordering

• If a process Pi sends a sequence of
messages m(i,1),...., m(i,ni), and Process
Pj sends a sequence of messages
m(j,1),...., m(j,nj), Then at any process,
the set of messages received are in some
sequential order

47© 2024 - Dr. Basit Qureshi

Messages from each individual processshould appear in the same
order sent by that process

• At every process, mi,1 should be delivered before mi,2,
which should be delivered before mi,3 and so on...

• At every process, mj,1 should be delivered before mj,2,
which should be delivered before mj,3 and so on...

ORDERING

• Sequential Ordering

• Example: Consider three processes P1, P2 and P3 executing multiple instructions on
three shared variables x, y and z. Assume that x, y and z are set to zero at start

• There are many valid sequences in which operations can be executed, respecting
sequential consistency (or program order). How can a program identify the wrong
sequence among the following sequences?

48© 2024 - Dr. Basit Qureshi Number of combinations for a total of n instructions = 𝑂(𝑛!)

ORDERING

• Causal Ordering
• Consider an interaction between processes P1 and P2 operating on replicated data
x and y

49© 2024 - Dr. Basit Qureshi

ORDERING

• Causal Ordering
• If process Pi sends a message mi and Pj sends mj,

and if mi→mj (operator ‘→’ is Lamport’s
happened-before relation) then any correct
process that delivers mj will deliver mi before mj

• In Ex1:
• m(1,1) and m(3,1) are in Causal Order

• m(1,1) and m(1,2) are in Causal Order

• In Ex2:
• m(1,1) and m(3,1) are NOT in Causal Order

50© 2024 - Dr. Basit Qureshi

	Slide 1: Replication & fault tolerance
	Slide 2: topics
	Slide 3: The 2 generals problem
	Slide 4: The 2 generals problem
	Slide 5: The 2 generals problem
	Slide 6: The 2 generals problem
	Slide 7: The 2 generals problem
	Slide 8: The 2 generals problem
	Slide 9: The 2 generals problem
	Slide 10: The 2 generals problem
	Slide 11: The byzantine generals problem
	Slide 12: The byzantine generals problem
	Slide 13: The byzantine generals problem
	Slide 14: The byzantine generals problem
	Slide 15: The byzantine generals problem
	Slide 16: The byzantine generals problem
	Slide 17: The byzantine generals problem
	Slide 18: The byzantine generals problem
	Slide 19: Failure model
	Slide 20: Failure model
	Slide 21: Failure model
	Slide 22: Failure model
	Slide 23: Failure model
	Slide 24: Failure model
	Slide 25: Failure model
	Slide 26: Fault tolerance and availability
	Slide 27: Fault tolerance and availability
	Slide 28: Fault tolerance and availability
	Slide 29: Fault tolerance and availability
	Slide 30: Fault tolerance and availability
	Slide 31: Fault tolerance and availability
	Slide 32: replication
	Slide 33: replication
	Slide 34: replication
	Slide 35: replication
	Slide 36: replication
	Slide 37: replication
	Slide 38: replication
	Slide 39: replication
	Slide 40: replication
	Slide 41: replication
	Slide 42: ordering
	Slide 43: ordering
	Slide 44: ordering
	Slide 45: ordering
	Slide 46: ordering
	Slide 47: ordering
	Slide 48: ordering
	Slide 49: ordering
	Slide 50: ordering

