
© 2024 - Dr. Basit Qureshi

HADOOP

TOPICS
• Why Hadoop?
• HDFS
• YARN
• MapReduce
• Summary

2© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

WHY	HADOOP?

WHY	HADOOP?
Big Data: The amount of data in the world is
expanding and increasing without limit, driven by
artificial intelligence, IoT, cloud computing and other
technologies.

Global market for Big Data revenue is expected to
reach 100 Billion USD in 2027.

• The global Data volume reached 41 ZettaBytes in
2019

• Expected to reach 163 ZB by 2025

• 1ZB = 1000 exabytes

• 1exabytes = 1 million terabytes

© 2024 - Dr. Basit Qureshi 4

Source: Statista

WHY	HADOOP?
Big Data Growth: Driven by video and social networks, in Europe alone, it is anticipated that the average mobile data
consumption to continue growing rapidly from approximately 15 GB/month in 2022 to 75-80 GB/month by 2030.

This creates an overall annual growth rate of 25%.

© 2024 - Dr. Basit Qureshi 5https://www.adlittle.com/en/insights/report/evolution-data-growth-europe

WHY	HADOOP?

Open Source: Hadoop has a large community that continuously improves the framework

Big Data: Hadoop is designed to handle vast amounts of data

Distributed Storage: Distributed nature allows it to store data efficiently

Distributed Computing: Hadoop's MapReduce programming model allows for parallel processing

Scalable: Scales horizontally by adding more nodes (systems) to the cluster

Fault Tolerance: If one node fails, the data can still be accessed

Cost effective: Inexpensive Commodity servers

Eco-System: Hadoop is part of a larger ecosystem that includes tools like Hive, Pig, HBase, and Spark,

© 2024 - Dr. Basit Qureshi 6

WHY	HADOOP?

© 2024 - Dr. Basit Qureshi 7

WHY	HADOOP?
Hadoop Distributed File System (HDFS)
• HDFS is the primary component of Hadoop ecosystem and is responsible for storing large data sets of

structured or unstructured data across various nodes and thereby maintaining the metadata in the
form of log files.

• HDFS consists of two core components i.e.
• NameNode: Manages the filesystem namespace and controls access to files by clients. It keeps

track of which blocks are stored on which DataNodes.
• DataNodes: Store the actual data blocks. They handle read and write requests from clients and

periodically report back to the NameNode with the status of the blocks they store.

© 2024 - Dr. Basit Qureshi 8

WHY	HADOOP?
MapReduce
• A programming model for distributed

computation on large datasets across a cluster of
computers. It simplifies data processing tasks by
breaking them down into smaller, manageable
chunks that can be processed in parallel, making
it highly effective for big data analysis.

• Map Function: This function takes input data and
processes it into key-value pairs. It performs data
filtering and transformation. The output of the
map function is then passed to the reduce
function

• Reduce Function: This function takes the output
from the map function, aggregates it, and
produces the final result.

© 2024 - Dr. Basit Qureshi 9

https://www.glennklockwood.com/data-intensive/hadoop/overview.html

WHY	HADOOP?
Yet Another Resource Negotiator (YARN)
• YARN performs scheduling and resource

allocation for the Hadoop System
• Consists of three major components i.e.

1. Resource Manager: Allocates resources for the
applications in a system

2. Nodes Manager: Allocates resources such as
CPU, memory, bandwidth on a machine (node)

3. Application Manager/Master: Interface
between the resource manager and node manager
and performs negotiations

© 2024 - Dr. Basit Qureshi 10

WHY	HADOOP?
Other components
• HIVE: Similar to SQL but designed for large datasets

• PIG: Similar to SQL designed for Yahoo

• Mahout: Supports Machine Learning

• Spark: Designed for real-time big data processing

• Hbase: NoSQL database enables Google Bigtable

• Solr, Lucene: searching and indexing services

• Zookeeper: Data coordination and synchronization

• Oozie: Task scheduler and workflow management

© 2024 - Dr. Basit Qureshi 11

WHY	HADOOP?
• Companies using Hadoop
• Yahoo
• Microsoft
• Facebook
• Amazon
• Netflix
• LinkedIn
• eBay
• Twitter
• Airbnb
• Spotify
• Adobe
• Bank of America
• Walmart

© 2024 - Dr. Basit Qureshi 12

© 2024 - Dr. Basit Qureshi

HDFS

GOALS	OF	HDFS
• Very Large Distributed File System

• 10,000 nodes, 100 million files, 10 Pbytes per namenode
• Can be expanded with federation with multiple namenodes

• Assumes Commodity Hardware
• Files are replicated to handle hardware failure
• Detect failures and recovers from them

• Optimized for Batch Processing
• Data locations exposed so that computations can move to where data resides
• Provides very high aggregate bandwidth

• Data Coherency
• Write-once-read-many access model
• Client can only append to existing files

• Files are broken up into blocks
• Typically 64MB-128MB block size
• Each block replicated on multiple DataNodes

HDFS	ARCHITECTURE
Major components of
HDFS
1. NameNode: Manages

metadata and file
system namespace.

2. DataNode: Stores
actual data blocks.

3. Client: Interacts with
HDFS on behalf of
users.

4. Blocks: Basic unit of
data storage in HDFS.

NAMENODE
Namenode: The Manager of the Cluster

• Manages File System Namespace
• Directory Structure
• Handles create, delete, rename, move files/blocks
• Maps a file name to a set of blocks
• Maps a block to the DataNodes where it resides

• Metadata storage
• File-to-block mapping (which blocks belong to which files).
• Block locations (on which DataNodes the blocks reside).

• Block management
• Allocates blocks for new files. Determines what DataNodes should store these blocks
• Manages replication factor for each block

• Coordination with Datanodes using heart-beats
• Detects and manages failures
• Interacts with Clients Transparency

DATANODE
• A Datanode is the worker node
• A Block Server
• Stores actual Blocks in HDFS
• Read/Write data in the local file system

Stores metadata of a block
• Serves data and metadata to Clients

• Block Report
• Periodically sends a report of all existing

blocks to the NameNode

• Facilitates Pipelining of Data
• Forwards data to other specified

DataNodes
Replication for Failure management

FAILURE	HANDLING
• HEART BEATS: DataNodes send heartbeat to the NameNode periodically
• Once every 3 seconds

• NameNode uses heartbeats to detect DataNode failure
• If a DataNode hasn’t replied in time;
• Chooses new DataNodes
• Distributes replicas to the new DataNodes

• Balances disk usage
• Balances communication traffic to DataNodesFa

ul
t T

ol
er

an
ce

DATA	PIPELINING	(I)
Need to update all replicas to ensure Consistency & Data integrity
• Client retrieves a list of DataNodes on which to place replicas of a block
• Client writes block to the first DataNode
• The first DataNode forwards the data to the next node in the Pipeline
• When all replicas are written, the Client moves on to write the next block

in file

Co
ns

ist
en

cy

DATA	PIPELINING	(II)

USER	INTERFACE
• Commands for HDFS User:
• hadoop dfs -mkdir /foodir
• hadoop dfs -cat /foodir/myfile.txt
• hadoop dfs -rm /foodir/myfile.txt

• Commands for HDFS Administrator
• hadoop dfsadmin -report
• hadoop dfsadmin -decommision datanodename

• Web Interface
• http://host:port/dfshealth.jsp

© 2024 - Dr. Basit Qureshi

YARN

YARN	CLUSTER	BASICS
• In a YARN cluster, there are two types of hosts:
• The ResourceManager is the master daemon that communicates with the client,

tracks resources on the cluster, and orchestrates work by assigning tasks
to NodeManagers.
• A NodeManager is a worker daemon that launches and tracks processes spawned

on worker hosts.

YARN	RESOURCE	MONITORING	(I)
• YARN currently defines two resources:
• v-cores
• memory.

• Each NodeManager tracks
• its own local resources and
• communicates its resource configuration to the ResourceManager

• The ResourceManager keeps
• a running total of the cluster’s available resources.

24

YARN	RESOURCE	MONITORING	(II)

25

100 workers of same resources

YARN	CONTAINER
• Containers
• a request to hold resources on the YARN cluster.
• a container hold request consists of vcore and memory

26

Container as a hold The task running as a
process inside a
container

INTERACTIONS	AMONG	YARN	COMPONENTS	(I)
1. The application starts and talks to the ResourceManager for the cluster

27

INTERACTIONS	AMONG	YARN	COMPONENTS	(II)
2. The ResourceManager makes a single container request on behalf of the
application

28

INTERACTIONS	AMONG	YARN	COMPONENTS	(III)
3. The ApplicationMaster starts running within that container

29

INTERACTIONS	AMONG	YARN	COMPONENTS	(IV)
4. The ApplicationMaster requests subsequent containers from the ResourceManager
that are allocated to run tasks for the application. Those tasks do most of the status
communication with the ApplicationMaster allocated in Step 3

30

INTERACTIONS	AMONG	YARN	COMPONENTS	(V)
5. Once all tasks are finished, the ApplicationMaster exits. The last container
is de-allocated from the cluster.

6. The application client exits. (The ApplicationMaster launched in a
container is more specifically called a managed AM. Unmanaged
ApplicationMasters run outside of YARN’s control.)

31

© 2024 - Dr. Basit Qureshi

MAPREDUCE

MAPREDUCE	-	WHAT?
• MapReduce is a programming model for efficient distributed computing
• It works like a Unix pipeline

• cat input | grep | sort | uniq -c | cat > output
• Input | Map | Shuffle & Sort | Reduce | Output

• Efficiency from
• Streaming through data, reducing seeks
• Pipelining

• A good fit for a lot of applications
• Log processing
• Web index building

MAPREDUCE	-	DATAFLOW

MAPREDUCE	-	FEATURES
• Fine grained Map and Reduce tasks
• Improved load balancing
• Faster recovery from failed tasks

• Automatic re-execution on failure
• In a large cluster, some nodes are always slow or flaky
• Framework re-executes failed tasks

• Locality optimizations
• With large data, bandwidth to data is a problem
• Map-Reduce + HDFS is a very effective solution
• Map-Reduce queries HDFS for locations of input data
• Map tasks are scheduled close to the inputs when possible

WORD	COUNT	EXAMPLE
• Mapper
• Input: value: lines of text of input
• Output: key: word, value: 1

• Reducer
• Input: key: word, value: set of counts
• Output: key: word, value: sum

• Launching program
• Defines this job
• Submits job to cluster

HADOOP-MAPREDUCE	WORKFLOW

split 0

split 1

split 2

split 3

split 4

part0

map

map

map

reduce

reduce part1

input
HDFS

sort/copy
merge

output
HDFS

MAPREDUCE	DATAFLOW

38

JobTracker generates three
TaskTrackers for map tasks

EXAMPLE

39

I am a tiger, you are also a
tiger

I,1
am,1
a,1

tiger,1
you,1
are,1

also,1
a, 1
tiger,1

a,2
also,1
am,1
are,1

I, 1
tiger,2
you,1

reduce

reduce

map

map

map

a, 1
a,1
also,1
am,1
are,1
I,1
tiger,1
tiger,1
you,1

Hadoop sorts the
intermediate data

JobTracker generates two
TaskTrackers for map tasks

part0

part1

INPUT	AND	OUTPUT	FORMATS
• A Map/Reduce may specify how it’s input is to be read by specifying an InputFormat to

be used
• A Map/Reduce may specify how it’s output is to be written by specifying an

OutputFormat to be used
• These default to TextInputFormat and TextOutputFormat, which process line-based text

data
• Another common choice is SequenceFileInputFormat and SequenceFileOutputFormat

for binary data
• These are file-based, but they are not required to be

HOW	MANY	MAPS	AND	REDUCES
• Maps

• Usually as many as the number of HDFS blocks being processed, this is the default
• Else the number of maps can be specified as a hint
• The number of maps can also be controlled by specifying the minimum split size
• The actual sizes of the map inputs are computed by:
• max(min(block_size,data/#maps), min_split_size)

• Reduces
• Unless the amount of data being processed is small
• 0.95*num_nodes*mapred.tasktracker.tasks.maximum

© 2024 - Dr. Basit Qureshi

SUMMARY

SUMMARY
• Advantages
• Scalability, Cost-Effective, Fault Tolerance, Flexibility, High Throughput
• Open source and widely used in the industry for small and large clusters

• Disadvantages
• Suitable for batch processing; Not suitable for real-time processing
• Not designed for transaction processing

SUMMARY
• Alternate eco-systems
• Apache Spark provides in-memory data processing which can significantly speed up

data processing tasks compared to Hadoop's disk-based MapReduce
• Apache Flink is designed for stream processing and supports both batch and real-

time data processing
• Apache Storm is another real-time computation system that is designed to process

unbounded streams of data with low latency.
• Google Cloud Dataflow is a fully managed service for stream and batch data

processing
• Microsoft Azure Synapse Analytics combines big data and data warehousing

capabilities in Microsoft Azure cloud platform

