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THE	LEAP	SECOND	GLITCH
• 2012: Reddit outage
• 2012: Mozilla, LinkedIn, Yelp!, Amadeus 

(airline booking) problems!
• 2017: Cloudflare (servers offline)

• Servers locked up! Non-responsive

• Some airlines processes stopped 
(Cannot reserve seats, check-ins delays 
for several hours)

• Chaos: Whats happening! 
• Server reboots -> No help!
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THE	LEAP	SECOND	GLITCH

• Culprit: System Clocks

• Why: Global clocks are sync’ed with Coordinated Universal Time (UTC)
• Leap seconds are added to account for the slight variations in the Earth's rotation
• Why: Atomic Time stays in sync with astronomical time
• Glitch happens when systems encounter difficulties adjusting to the extra second
• So: System Admins have to manually “add” time to the clocks
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WHY	CLOCKS	ARE	IMPORTANT
Distributed systems need to measure time:
• Scheduling: Timeouts, Failure detectors, Retry counters 
• Performance: Measurements, statistics, profiling 
• Databases and Transactions: Record event occurrence time
• Data with Time to Live (TTL): Cache entries, replicas 
• Order of events: Communication between nodes 

Two types of clock: 
• Physical clocks: count number of seconds elapsed 
• Logical clocks: count events, e.g. messages sent
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WHY	CLOCKS	ARE	IMPORTANT
Physical Clocks
• Measure time in seconds
• Analog clocks based on mechanical mechanism 

(Pendulum)
• Digital clocks based on vibrating quartz crystal

• Quartz is a hard, crystalline mineral composed of silica 
(silicon dioxide)

• Quartz crystals exhibit the piezoelectric effect, which 
means they can generate an electric charge when 
mechanical stress is applied to them

• Oscillator circuit measures resonance frequency when
electric voltage is applied to the crystal

• The current time is based on counting the oscillations of 
the quartz crystal
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WHY	CLOCKS	ARE	IMPORTANT
Quartz Clocks
• Cheap but not very accurate!
• One clock runs slightly fast, another 

slightly slow 
• Drift measured in parts per million 

(ppm) 
• 1 ppm = 1 microsecond/second = 86 

ms/day = 32 s/year
• Temperature affects accuracy!
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WHY	CLOCKS	ARE	IMPORTANT
Atomic Clocks
• Extraordinarily accurate!
• Uses the vibrations of atoms to measure time 

(cesium-133, or rubidium-87)
• Caesium-133 has a resonance (“hyperfine 

transition”) at ≈ 9 GHz
• 1 second = 9,192,631,770 periods of that signal 
• Accuracy ≈ 1 in 10−14 (1 second in 3 million years)
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WHY	CLOCKS	ARE	IMPORTANT
GPS based time
• GPS Satellite based systems (Galileo, GLONASS)

• Operates with 24 satellites distributed in three orbital 
planes.

• Each GLONASS satellite continuously broadcasts signals 
[satellite’s current position and the current time]

• GPS navigation device or a smartphone with GNSS 
capability, receives signals from multiple GLONASS satellites

• Receiver can calculate its own position on Earth through a 
process called tri-lateration

• Combines results from 3 satellites for improved accuracy
• Problem: the speed of rotation of the planet is not 

constant; it fluctuates due to the effects of tides, 
earthquakes, glacier melting, and some unexplained 
factors.
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WHY	CLOCKS	ARE	IMPORTANT
Coordinated Universal Time (UTC)
• Based on atomic time BUT
• Needs periodic corrections due to variations in earths 

rotation.
• International Atomic Time (TAI): 1 day is 24 × 60 × 60 ×

9,192,631,770 periods of caesium-133’s resonant 
frequency 
• Problem: speed of Earth’s rotation is not constant 

Compromise: UTC is TAI with corrections to account for 
Earth rotation
• Solution: Add a leap second
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WHY	CLOCKS	ARE	IMPORTANT
Leap second
• Every Six months (June 30 and December 31)
• Skip One second (23:59:58 -> 00:00:00)
• Usual (23:59:59 -> 00:00:00)
• Add One second (23:59:59 -> 23:59:60)

• This is announced several months beforehand
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http://leapsecond.com/notes/leap-watch.htm



WHY	CLOCKS	ARE	IMPORTANT
How Computers see time
• Unix time
• Number of seconds since 1 January 1970, 00:00:00 UTC (epoch). “Leap 

seconds not added”

• ISO 8601
• YY:MM:DD:HH:MM:SS+Offset
• Eg. 2024-02-29T09:50:17+03:00

• Conversion
• Gregorian calendar: 365 days in a year, except leap years

(year % 4 == 0 && (year % 100 != 0 || year % 400 == 0))
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WHY	CLOCKS	ARE	IMPORTANT
How Computers see time
• Java’s System.currentTimeMillis() is like Unix time, but uses 

milliseconds rather than seconds
long T1 = System.currentTimeMillis();
DoSomeErrand();
long T2 = System.currentTimeMillis();
System.out.print(T2-T1);

• Was the leap second counted??
• Unix timestamps, and POSIX standard ignore leap seconds! 
• Difference of a few seconds is not significant.

• However:
• Dist. Systems rely on time-stamps;
• A millisecond can cause errors
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WHY	CLOCKS	ARE	IMPORTANT
Poor handling of the leap second on 30 June 2012 is what caused the 

simultaneous failures of many services on that day. 

Due to a bug in the Linux kernel, the leap second had a high 
probability of triggering a livelock condition when running a 

multithreaded process

Even a reboot did not fix the problem, but setting the system clock 
reset the bad state in the kernel.
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Fix!
• Leap smearing: gradually distribute the adjustment over a longer period 

of time rather than adding the extra second all at once.



CLOCK	SYNCHRONIZATION
//so for Java programmers: The BAD

long T1 = System.currentTimeMillis();
DoSomeErrand(); // NTP Client may update time
long T2 = System.currentTimeMillis();
System.out.print(T2-T1);

//elapsed time may be negative!

//The GOOD
long T1 = System.nanoTime();
DoSomeErrand();
long T2 = System. nanoTime();
System.out.print(T2-T1);

//elapsed time is always >=0
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CLOCK	SYNCHRONIZATION
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CLOCK	SYNCHRONIZATION
• Simplest synchronization technique 
• Send a Server, request to obtain the time 
• Set the time to the returned value
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Problem: What about network latency??



CLOCK	SYNCHRONIZATION
• Christians method
• Compensate for delays 
• Note times: 

• request sent: T0 
• reply received: T1 

• Assume network delays are symmetric
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CLOCK	SYNCHRONIZATION
• Christians method
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What about errors and accuracy??



CLOCK	SYNCHRONIZATION
• Christians method example:
• Client sent request at 5:08:15.100 (T0) 
• Client receives response at 5:08:15.900 (T1) 
• Response contains 5:09:25.300 (Tserver)
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Elapsed time is T1 -T0 = 5:08:15.900 - 5:08:15.100 = 800 ms

Best guess timestamp was generated: 800ms / 2 = 400 ms ago

Set time to Tserver+ elapsed time = 5:09:25.300 + 0.400 = 
5:09:25.700

Note: 1000ms = 1 second



CLOCK	SYNCHRONIZATION
• Christians method
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CLOCK	SYNCHRONIZATION
• Berkeley Algorithm [Gusella & Zatti, 1989]
• Designed for intranets
• Assumes no machine has an accurate time source 
• Obtains time from participating computers 
• Synchronizes all clocks to a fault-tolerant average 
• Select the largest set of time values that don’t differ from each other by 

some quantity 
• Avoids averaging values of malfunctioning clocks or clocks that drifted 

too far
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CLOCK	SYNCHRONIZATION
• Berkeley Algorithm [Gusella & Zatti, 1989]
• Example:
• 1. Request timestamps from all followers
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CLOCK	SYNCHRONIZATION
• Berkeley Algorithm [Gusella & Zatti, 1989]
• Example:
• 2. Compute Fault-tolerant average:
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CLOCK	SYNCHRONIZATION
• Berkeley Algorithm [Gusella & Zatti, 1989]
• Example:
• 3. Send off-set to each client
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CLOCK	SYNCHRONIZATION
• Berkeley Algorithm [Gusella & Zatti, 1989]
• Problems:
• The Berkeley Algorithm relies on a centralized time source [Single point of

failure]
• The algorithm assumes that the network delay between the time server 

and all other nodes is symmetric [Not realistic]
• Does not explicitly account for clock drift, which refers to the tendency of 

clocks to gain or lose time over time due to inaccuracies in their oscillators
• Scalability challenges in larger networks with a high number of nodes
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CLOCK	SYNCHRONIZATION
• Computers track physical time/UTC with a quartz clock (with 

battery, continues running when power is off) 
• Due to clock drift, clock error gradually increases 
• Clock skew: difference between two clocks at a point in time
• Solution: Periodically get the current time from a server that has a 

more accurate time source (atomic clock or GPS receiver)
• Atomic clocks are too expensive 
• Too bulky to build into every computer and phone
• Use quartz clocks BUT adjust for Clock drifts
• Use Network Time Protocol (NTP), Precision Time Protocol (PTP) for clock 

re-adjustment
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CLOCK	SYNCHRONIZATION
• Once the client has estimated the clock skew θ, it needs to apply 

that correction to its clock. 
• If |θ| < 125 ms, slew the clock: slightly speed it up or slow it down by up to 

500 ppm (brings clocks in sync within ≈ 5 minutes) 
• If 125 ms ≤ |θ| < 1,000 s, step the clock: suddenly reset client clock to 

estimated server timestamp 
• If |θ| ≥ 1,000 s, panic and do nothing (leave the problem for a human 

operator to resolve) 

Systems that rely on clock sync need to monitor clock skew!
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CLOCK	SYNCHRONIZATION
• OS vendors run NTP Servers
• Mainstream OS have NTP clients built-in
• OS connects to NTP server for time correction
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CLOCK	SYNCHRONIZATION
• Idea: NTP client contact multiple servers, discard outliers, average 

results
• Problem: Network latency!
• Reduces clock skew to a few milliseconds in good network 

conditions, but can be much worse!
• Latency is unpredictable!
• Geographical local of server
• Servers with long queues: Slow response
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CLOCK	SYNCHRONIZATION
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CLOCK	SYNCHRONIZATION
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CLOCK	SYNCHRONIZATION
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SNTP Example



CLOCK	SYNCHRONIZATION
Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol
• Designed to synchronize clocks on a LAN to sub-microsecond precision 
• Designed for LANs, not global: low jitter, low latency 
• Timestamps ideally generated at the MAC or PHY layers to minimize delay and jitter 

• Determine master clock (called the Grandmaster) 
• Use a Best Master Clock algorithm to determine which clock is most precise 
• The Grandmaster sends periodic synchronization messages to others (slave devices) 

• Two phases in synchronization 
• 1. Offset correction 
• 2. Delay correction
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CLOCK	SYNCHRONIZATION
Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol
• Chooses the Best Master Clock 
• Distributed election based on properties of clocks 
• Criteria from highest to lowest: 
• Priority 1 (admin-defined hint) 
• Clock class 
• Clock accuracy 
• Clock variance: estimate of stability based on past syncs 
• Priority 2 (admin-defined hint #2) 
• Unique ID (tie-breaker)
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CLOCK	SYNCHRONIZATION
Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol
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CLOCK	SYNCHRONIZATION
Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol
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CLOCK	SYNCHRONIZATION
Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol
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CLOCK	SYNCHRONIZATION
Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol
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CLOCK	SYNCHRONIZATION
Precision Time Protocol (PTP): IEEE 1588 Precision Time Protocol
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CLOCK	SYNCHRONIZATION
NTP vs PTP
Range:
• NTP: nodes widely spread out on the Internet 
• PTP: LAN -> Usually implemented at the physical layer to eliminate 

OS & scheduling overhead 

Accuracy 
• NTP usually several milliseconds on WAN 
• PTP usually sub-microsecond on LAN (around 1 µs) 
• PTP can be 10,000x more precise than NTP!
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ORDERING	OF	MESSAGES	IN	DIST.	SYS.
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ORDERING	OF	MESSAGES
• Consider a scenario with 3 nodes A, B and C group communicating
• A makes a statement m1 and multi-casts it to B and C
• m1 is received at B immediately, C receives it late due to latency
• On receiving m1, B reacts by sending m2 and copies m2 to C.
• Now C receives m2 and then m1

• Real-life example:
• Database transactions
• State variables update etc.
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User A User B User C

m1

m1

m1 = “User A says: Coffee is hot”

m2 = “User B says: No its cold!”

m2m2

• User C see m2 first and then m1, even though logically m1 happened before m2
• How can C determine the correct order in which it should put the messages? 
• A monotonic clock won’t work since its timestamps are not comparable across nodes.
• Solution: Send timestamps
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User A User B User C

m1

m1

m1 = t1, “User A says: Coffee is hot”

m2 = t2, “User B says: No its cold!”

m2m2

• A sends m1 with timestamp t1 according to A’s clock. 
• When B receives m1, the timestamp according to B’s clock is t2, where t2 < t1, because A’s clock 

is slightly ahead of B’s clock.
• So, if we order messages based on their timestamps from time-of-day clocks, we might again 

end up with the wrong order.

t1

t2



ORDERING	OF	MESSAGES
• To get “correct order”, define a happens-before rule:
• Event a happens before event b (written a → b) iff:
• a and b occurred at the same node, a occurred before b in the local node OR
• a is sending of a message m, b is receiving of the message m
• There exists a event c such that a → c and c → b

The happens-before relation is a partial order, i.e. it is possible that neither 
a → b nor b → a. 

In that case, a and b are concurrent (written a || b).

© 2024 - Dr. Basit Qureshi 47



© 2024 - Dr. Basit Qureshi

48



ORDERING	OF	MESSAGES
Causality:
• The happens-before relation is a way of reasoning about causality in 

distributed systems. 
• Causality considers whether information could have flowed from one 

event to another, and thus whether one event may have influenced 
another.
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In the previous example: message m1 “caused” the message m2



ORDERING	OF	MESSAGES
Causality:
Taken from physics (relativity). 
When a → b, then a might have caused b. 
When a || b, we know that a cannot have caused b.

50

Concept taken from Physics: it is not possible for information to travel faster than the speed of light

It is impossible for a signal sent from a to arrive at b’s location before event b, and vice versa. 
Therefore, a and b must be causally unrelated

It is possible for a signal from a to reach c, and therefore a might influence c

In distributed systems, we usually work with messages on a network rather than beams of light, but 
the principle is very similar.



CLOCK	ALGORITHMS
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CLOCK	ALGORITHMS
• Distributed systems often broadcast messages (multi-cast)
• Several different broadcast protocols are used in practice, and their main 

difference is the order in which they deliver messages.
• Important to understand how clocks are needed for synchronization

• Physical clock: count number of seconds elapsed 
• Logical clock: count number of events occurred 
• Physical timestamps: useful for many things, but may be inconsistent with 

causality. 
• Logical clocks: designed to capture causal dependencies.

(a -> b) => T(a) < T(b)
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CLOCK	ALGORITHMS
Lamport clock algorithm

© 2024 - Dr. Basit Qureshi 53



CLOCK	ALGORITHMS
Lamport clock algorithm
• Each node maintains a counter t, incremented on every local event e
• Let L(e) be the value of t after that increment 
• Attach current t to messages sent over network
• Recipient moves its clock forward to timestamp in the message (if greater 

than local counter), then increments 

Properties of this scheme: 
• If a → b then L(a) < L(b) 
• However, L(a) < L(b) does not imply a → b
• Possible that L(a) = L(b) for (a != b)
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CLOCK	ALGORITHMS
Lamport clock algorithm
• A Lamport timestamp is essentially an integer that counts the number of 

events that have occurred. 
• As such, it has no direct relationship to physical time. 
• On each node, time increases because the integer is incremented on every 

event. 
• The algorithm assumes a crash-stop model (or a crash-recovery model if 

the timestamp is maintained in stable storage, i.e. on disk).
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CLOCK	ALGORITHMS
Lamport clock algorithm
• When a message is sent over the network, the sender attaches its current 

Lamport timestamp to that message
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• t = 2 is attached to m1 and t = 4 is attached to m2. 
• When the C receives a message, it moves its local Lamport clock forward to the timestamp in the 

message plus one 



CLOCK	ALGORITHMS
Lamport clock algorithm
• Lamport timestamps have the property that if a happened before b, then b always has 

a greater timestamp than a; in other words, the timestamps are consistent with 
causality. 
• It is also possible for two different events to have the same timestamp
• If we need a unique timestamp for every event, each timestamp can be extended with 

the name or identifier of the node on which that event occurred.
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Given the Lamport timestamps of two events, it is in general not possible to tell whether those events are 
concurrent or whether one happened before the other. If we do want to detect when events are concurrent, we 
need a different type of logical time: a vector clock.



CLOCK	ALGORITHMS
Lamport clock algorithm
• It is also possible for two different events to have the same timestamp
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CLOCK	ALGORITHMS
Lamport clock algorithm
• If we need a unique timestamp for every event, each timestamp can be extended with 

the name or identifier of the node on which that event occurred.
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CLOCK	ALGORITHMS
Vector clock algorithm
• Lamport timestamps are just a single integer, vector timestamps are a list of integers, 

one for each node in the system.
• Assume n nodes in the system, N = {N1, N2, . . . , Nn}
• Vector timestamp of event a is V (a) = {t1, t2, . . . , tn}
• ti is number of events observed by node Ni

• Each node has a current vector timestamp T
• On event at node Ni, increment vector element T[i] 
• Attach current vector timestamp to each message
• Recipient merges message vector into its local vector
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Apart from the difference between a scalar and a vector, the vector clock algorithm is very similar to a Lamport clock



CLOCK	ALGORITHMS
Vector clock algorithm
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CLOCK	ALGORITHMS
Vector clock algorithm
• A node initializes its vector clock to contain a zero for each node in the 

system. 
• Whenever an event occurs at node Ni , it increments the ith entry (its own 

entry) in its vector clock. 
• When a message is sent over the network, the sender’s current vector 

timestamp is attached to the message. 
• Finally, when a message is received, the recipient merges the vector 

timestamp in the message with its local timestamp by taking the element-
wise maximum of the two vectors, and then the recipient increments its 
own entry.
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CLOCK	ALGORITHMS
Vector clock algorithm
Assuming the vector of nodes is N = {A, B, C}
The vector timestamp of an event e represents a set of events, e and its 
causal dependencies
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For example, (2, 2, 0) represents the first two events from A, the first two events from B, and no events from C



CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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CLOCK	ALGORITHMS
Vector clock algorithm
Example
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SUMMARY
• Vector clocks give us a way of identifying which events are causally related
• We are guaranteed to get the sequencing correct
• Problems: Vector size + Larger vector need more comparison time (Space & Time)

• Causality 
• If a -> b then event a can affect event b

• Concurrency 
• If neither a -> b nor b -> a then one event cannot affect the other 

• Partial Ordering 
• Causal events are sequenced 

• Total Ordering 
• All events are sequenced
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