
© 2024 - Dr. Basit 

Qureshi

DISTRIBUTED MUTUAL 
EXCLUSION



TOPICS

• Dist. Mutual Exclusion
• Centralized Algorithm

• Token Ring Algorithm

• Dist. Mutual Exclusion Algorithms
• Lamport

• Ricart & Agarwala

• Other algorithms

• Leader Election Algorithms
• Bully

• Ring

• Concensus Algorithms

• Raft

2© 2024 - Dr. Basit Qureshi



CS330 OPERATING SYSTEMS (RECAP)

• Mutual Exclusion?
• TO prevent multiple processes from accessing a shared resource or critical section at the same time.

• Mutual Exclusion – Only one process in critical section.
• Progress – If no one is in the critical section, some process should be allowed in.
• Bounded Waiting – A process should not wait forever to enter the critical section.

• Examples:
• Dining Philosopher problem (Deadlocks, starvation, locks etc) 

• Solutions?
• Semaphores, Mutex locks, Monitors

© 2024 - Dr. Basit Qureshi 3

Shared Object: Processor (CPU)



© 2024 - Dr. Basit 

Qureshi

DISTRIBUTED MUTUAL 
EXCLUSION



DIST MUTUAL EXCLUSION

“A distributed system ensures that only one process or node can access a 
shared resource or critical section at any given time”.

• Examples:
• Modify a shared file

• Update a database field

• Modify replication messages

• Easy to handle for atomic requests [Covered in CS330]
• One message, one server

• One system: Hardware compatibility, Semaphores, Messages, Condition variables

• Challenging if
• Multiple messages on multiple servers with different hardware capabilities

• Need synchronization and coordination

© 2024 - Dr. Basit Qureshi 5



DIST MUTUAL EXCLUSION

GOAL:

• Distributed Mutual Exclusion ensures that only one process is granted permission to 
access the resource at a time, while others are blocked or delayed until the resource 
becomes available.

AIM:

• Safety: Ensuring that only one process accesses the Critical Section at a time

• Liveness: Ensuring that processes eventually gain access to the critical section, even 
in the presence of failures, delays, or network partitions.

• Efficiency: [Optional] Minimizing overhead and maximizing resource utilization 
while maintaining safety and liveness properties.

APPLICATION (Few Examples): Shared printers, ATM machines, Shared DB tables, Shared files etc.

© 2024 - Dr. Basit Qureshi 6



DIST MUTUAL EXCLUSION

HOW Dist Mutual Exclusion Differs from a Single Processor Mut. Exl.:

NEEDS:
• Process identification: Every process has a unique Identifier (e.g., address.process_id) 

• Reliable communication: Network messages are reliable 

• Live processes: Ensure system processes are responsive & do not die.

• Resource identification: All Agree on resource identification 

HOW:
• Pass the identifier with each request 

• e.g., lock("printer"), lock("table:employees"), 
lock("table:employees;row:15"), lock("shared_file.txt") 

• We’ll just use request(R) to request exclusive access to resource R 

© 2024 - Dr. Basit Qureshi 7



DIST MUTUAL EXCLUSION

• Algorithms
• Centralized: A coordinator is responsible for allowing access to a shared resource

• Token-based: Access if a token was granted

• Contention-based (Quorum): Via Distributed agreement

© 2024 - Dr. Basit Qureshi 8



DIST MUTUAL EXCLUSION

• Centralized Algorithms: Similar to a single processor system:
• Process P Request(R) access to resource R from Coordinator C

• Wait for response

• Receive Access

• Access resource

• Release(R)

© 2024 - Dr. Basit Qureshi 9



DIST MUTUAL EXCLUSION

• Centralized Algorithms: If another Process tries to access:
• Maintain a FIFO queue at coordinator

• Coordinator: Donot reply until resource available

© 2024 - Dr. Basit Qureshi 10



DIST MUTUAL EXCLUSION

• Centralized Algorithms: If another Process tries to access:
• Maintain a FIFO queue at coordinator

• Coordinator: Donot reply until resource available

© 2024 - Dr. Basit Qureshi 11



DIST MUTUAL EXCLUSION

• Centralized Algorithms: If another Process tries to access:
• Maintain a FIFO queue at coordinator

• Coordinator: Donot reply until resource available

© 2024 - Dr. Basit Qureshi 12



DIST MUTUAL EXCLUSION

• Centralized Algorithms: If another Process tries to access:
• Maintain a FIFO queue at coordinator

• Coordinator: Donot reply until resource available

© 2024 - Dr. Basit Qureshi 13



DIST MUTUAL EXCLUSION

• Centralized Algorithms: 

• The Good
• Easy to implement

• FIFO Queue takes order into consideration 

• Processes do not need to communicate to other processes; just the coordinator

• Efficient: 2 message to enter, 1 message to exit

• The Bad
• Single point of failure: Coordinator crashes!

• A crashed coordinator blocks access to resource

• Coordinator can become a bottleneck!

© 2024 - Dr. Basit Qureshi 14



DIST MUTUAL EXCLUSION

• De-Centralized Algorithms: Token-Ring Algorithm 

• Processes known each other in a group
• Processes can be assigned a unique process IDs

• Construct logical ring in software 

• Process communicates with its neighbor and not with the coordinator

© 2024 - Dr. Basit Qureshi 15



DIST MUTUAL EXCLUSION

• De-Centralized Algorithms: Token-Ring Algorithm 

• Initialization 
• Process 0 creates a token for resource R 

• Token circulates around ring from Pi to P(i+1)mod N 
• When process acquires token 

• Checks to see if it needs the resource (the lock) 

• No: send the token to its neighbor 

• Yes: access resource & hold token until done

© 2024 - Dr. Basit Qureshi 16



DIST MUTUAL EXCLUSION

• De-Centralized Algorithms: Token-Ring Algorithm 

© 2024 - Dr. Basit Qureshi 17



DIST MUTUAL EXCLUSION

• De-Centralized Algorithms: Token-Ring Algorithm 

• The Good
• Saftey: Only One process at a time [Mutual Exclusion is guaranteed]

• Liveness: Order is defined, but not always First-Come-First-Serve (FCFS)

• Delay: Request = 0…N-1 messages; Release = 1 message

• The Bad
• Constant activity

• Process dies: Token is lost! Needs to be re-generated

• Detecting loss can be challenging (really lost or someone is holding it)

• Communication error: What if no communication with neighbor

© 2024 - Dr. Basit Qureshi 18



© 2024 - Dr. Basit 

Qureshi

DIST MUTUAL EXCLUSION 
DE-CENTRALIZED 

ALGORITHMS



LAMPORT MUTUAL EXCLUSION

• Uses Lamport's logical clocks and message passing to coordinate access to 
a shared resource among multiple processes.

• Messages are sent reliably and in single-source FIFO order 
• Each message is time stamped with totally ordered (i.e., unique) Lamport 

timestamps 

• Ensures that each timestamp is unique 

• Every node can make the same decision by comparing timestamps

• Each process maintains a request queue 
• Queue contains mutual exclusion requests 

• Queues are sorted by message timestamps

© 2024 - Dr. Basit Qureshi 20



LAMPORT MUTUAL EXCLUSION

Step 1: Request a resource R: 

• Process Pi sends Request(R, i, Ti) to ALL nodes

• It also places the same request onto its own queue 

• When a process Pj receives a request: 

• Places the request on its request queue 

• It returns a timestamped Reply(Tj) 

• Every process will have an identical queue 

© 2024 - Dr. Basit Qureshi 21



LAMPORT MUTUAL EXCLUSION

Step 2: Use the resource R: 

• Pi can access the resource if 

• Pi has received Reply messages from every process 
Pj where Tj > Ti 

• Pi  request has the earliest timestamp in its queue

© 2024 - Dr. Basit Qureshi 22

i.e. If your request is at the head of the queue AND you received Replies for that request 
… then you can access the critical section



LAMPORT MUTUAL EXCLUSION

Step 3: Release the resource R: 

• Process Pi removes its request from its queue 

• Sends Release(Ti) to all nodes 

• Each process now checks if its request is the earliest in 
its queue 

• If so, that process now has the lock on the resource

© 2024 - Dr. Basit Qureshi 23



LAMPORT MUTUAL EXCLUSION

Assessment

• Safety: Replicated queues – same process on top

• Liveness: Sorted queue & Lamport timestamps ensure First come first serve

• Delay/Bandwidth: 

• Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs

• Release = (N-1) Release msgs 

• Problems 

• N points of failure 

• A lot of messaging traffic: Requests & releases are sent to the entire group

© 2024 - Dr. Basit Qureshi 24



RICART & AGARWALA MUTUAL EXCLUSION

Designed to reduce message overhead compared to Lamport's algorithm

Basic Idea:

• Allow processes to grant permission to enter the critical section directly

• No need to consult a central authority

© 2024 - Dr. Basit Qureshi 25



RICART & AGARWALA MUTUAL EXCLUSION

When a process wants to enter critical section: 

1. Compose a Request(R, i, Ti) message containing: 

• R: Name of resource 

• i: Process Identifier(machine ID, process ID) 

• Ti: Timestamp (totally-ordered Lamport) 

2. Reliably multicast request to all processes in group 

3. Wait until everyone gives permission (sends a Reply) 

4. Enter critical section / use resource

© 2024 - Dr. Basit Qureshi 26



RICART & AGARWALA MUTUAL EXCLUSION

When process receives a request: 

• If receiver not interested: send Reply to sender 

• If receiver is using the resource: do not reply; add request to queue 

• If receiver just sent a request as well: (potential race condition) 
• Compare timestamps on received & sent messages: earliest timestamp wins 

• If receiver is the loser: send Reply 

• If receiver is the winner: do not Reply 

• Queue the request 

• When done with resource: send Reply to all queued requests

© 2024 - Dr. Basit Qureshi 27



RICART & AGARWALA MUTUAL EXCLUSION

Assessment

• Safety: Two competing processes will not send a Reply to each other 

• Timestamps in the requests are unique 

• one will be earlier than the other 

• Liveness: Lamport timestamps ensure First come first serve

• Delay/Bandwidth: 

• Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs

• Release = 0…(N-1) Reply msgs to queued requests

• Problems 

• N points of failure 

• A lot of messaging traffic: Requests & releases are sent to the entire group

© 2024 - Dr. Basit Qureshi 28



LAMPORT VS RICART & AGARWALA MUTUAL EXCLUSION

Lamport

• Everyone replies … always – no hold-back 
• 3(N-1) messages Request → Reply → Release 

• Always compares Timestamps: Process is granted the resource if its request is 
the earliest in its queue

Ricart & Agarwala

• Reply only if you are in the critical section (or won a tie) 

• Don’t respond with a Reply until you are done with the critical section 
• 2(N-1) messages 

• Request → ACK 

• Process is granted the resource if it gets ACKs from everyone

© 2024 - Dr. Basit Qureshi 29



COMPARISON

Lamport

• Traffic: 3(N-1) messages per Critical 
Section entry

• Timestamps: Always

• Total ordering: Uses a centralized 
timestamp mechanism that requires all 
messages to be delivered and processed 
for accurate ordering

• Less fault tolerant: failure in message 
delivery could cause issues with 
synchronization

• Application: Better for applications 
requiring strict global ordering

• Ensures fairness because requests are 
processed in the order of timestamps

Ricart & Agarwala

• 2(N - 1) messages per critical section entry.

• Only use time stamps to resolve race condition

• Is fully decentralized, with no single point of 
failure. However, it still requires all processes to 
respond to each other, meaning that if a node 
fails, it can block access to the critical section.

• Fault tolerance can be an issue if there is no 
handling of non-responsive nodes

• Offers more relaxed synchronization, benefiting 
applications with simpler access needs

• Fairness is more conditional on all processes 
responding in a timely manner. Delays can 
cause issues

© 2024 - Dr. Basit Qureshi

30



LAMPORT VS RICART & AGARWALA MUTUAL EXCLUSION

Other algorithms

• Suzuki-Kasami
• Token-based mutual exclusion algorithm
• + Efficient in systems with low contention
• - High message overhead in high-contention situations

• Maekawa
• Groups nodes in Quorums ( a subset of nodes).
• + Reduces message complexity by limiting the number of nodes 
• - Can cause deadlocks on quorum (subset of nodes).

• Dijkstra's Token Ring Algorithm
• Only the process holding the token is allowed to enter the critical section
• + Each process gets a fair turn with minimal communication 
• - High latency in large systems, as the token must travel through each node

• Raynal's Algorithm
• Similar to Lamport but requires acknowledgements
• +Reliable and ensures that requests are handled in a well-defined order
• -Message overhead is relatively high increasing latency 

© 2024 - Dr. Basit Qureshi 31



© 2024 - Dr. Basit 

Qureshi

CONTENTION- BASED 
(QUORUM) /

 LEADER ELECTION 
ALGORITHMS



BULLY ALGORITHM

• Bully Algorithm

• GOAL: Select the process with the largest ID as a leader

• Holding an election: when process Pi detects a dead leader: 
• Send election message to all processes with higher IDs 

• If nobody responds, Pi wins and takes over 

• If any process responds, P’s job is done 
• Optional: Let all nodes with lower IDs know an election is taking place

• If a process receives an election message 
• Send an OK message back 

• Hold an election (unless it is already holding one)

© 2024 - Dr. Basit Qureshi 33



BULLY ALGORITHM

© 2024 - Dr. Basit Qureshi 34



BULLY ALGORITHM

© 2024 - Dr. Basit Qureshi 35



BULLY ALGORITHM

© 2024 - Dr. Basit Qureshi 36



BULLY ALGORITHM

© 2024 - Dr. Basit Qureshi 37



BULLY ALGORITHM

© 2024 - Dr. Basit Qureshi 38



RING ELECTION ALGORITHM

Ring Election Algorithm

• GOAL: Select the process with the largest ID as a leader

• Initiate the election by sending an "election" message to its neighbor with the next highest priority.

• Upon receiving an election message, compare the priority value in the message with its own. 
• If priority is higher than its own, it forwards the message to its neighbor. 

• If priority is lower or equal, it discards the message.

• The election message continues around the ring until it reaches the highest priority process. 

• The new leader broadcasts a "leader" message to inform all other processes of its election.

© 2024 - Dr. Basit Qureshi 39



RING ELECTION ALGORITHM

Ring Election Algorithm

© 2024 - Dr. Basit Qureshi 40



RING ELECTION ALGORITHM

Ring Election Algorithm

© 2024 - Dr. Basit Qureshi 41



RING ELECTION ALGORITHM

Ring Election Algorithm

© 2024 - Dr. Basit Qureshi 42



RING ELECTION ALGORITHM

Ring Election Algorithm

© 2024 - Dr. Basit Qureshi 43



RING ELECTION ALGORITHM

Ring Election Algorithm

© 2024 - Dr. Basit Qureshi 44



RING ELECTION ALGORITHM

Ring Election Algorithm

© 2024 - Dr. Basit Qureshi 45



RING ELECTION ALGORITHM

Ring Election Algorithm

© 2024 - Dr. Basit Qureshi 46



RING ELECTION ALGORITHM

Ring Election Algorithm

© 2024 - Dr. Basit Qureshi 47



COMPARISON
Bully

Pros:

• Fast in small systems – Elects a leader quickly if 
the initiator has the highest ID.

• Guaranteed to elect the highest-ID process as 
the leader.

• Works even if multiple processes initiate 
election at the same time.

Cons:

• High message overhead in large systems – 
Worst case: O(n2) messages.

• Single point of restart – Only works if higher-ID 
processes respond correctly.

• More sensitive to crashes during election.

• Assumes synchronous communication for 
timeout detection.

Ring Election

Pros:

• Lower message complexity – Around O(n) 
messages.

• Simple and easy to implement in a ring-
structured system.

• Works well in synchronous and asynchronous 
systems.

• No need for global knowledge (like all process 
IDs).

Cons:

• Slower in large rings, since messages travel 
one-by-one around the ring.

• Vulnerable to ring breakage (e.g., if a process 
in the ring fails and breaks the path).

• Doesn't always elect the highest-ID process 
unless designed to do so.

© 2024 - Dr. Basit Qureshi

48



© 2024 - Dr. Basit 

Qureshi

ADDRESSING NETWORK 
PARTITIONS IN 

CONTENTION- BASED 
(QUORUM) /

 LEADER ELECTION 
ALGORITHMS



ELECTIONS & NETWORK PARTITIONS

• Network partitions (segmentation) 
• Multiple nodes may decide they’re the leader 

• Multiple groups, each with a leader & diverging data among them → split brain

© 2024 - Dr. Basit Qureshi 50

• Insist on a majority → if no majority, the system will not function. 
• Quorum = minimum # of participants required for a system to function.



CONSENSUS

Why consensus is needed?

• Single Client

© 2024 - Dr. Basit Qureshi 51

We rely on a quorum (majority) for reads & writes 
If we have to write to a majority of servers for the write to succeed and 
we have to read from a majority of servers for the read to succeed then 
we can be certain that at least one server has the latest version of data. 

No quorum = failed read!



CONSENSUS

Why consensus is needed?

• Multiple clients

© 2024 - Dr. Basit Qureshi 52

We risk inconsistent updates



CONSENSUS

Why consensus is needed?

• Multiple clients -> use Coordinator?

© 2024 - Dr. Basit Qureshi 53

Coordinator (or sequence # generator) processes requests one at a time 
But now we have a single point of failure!



CONSENSUS

Why consensus is needed?

• Mutual Exclusion
• Choose which process can access a resource from all who want it 

• Agree on who gets a resource or who becomes a coordinator

• Election algorithms 
• Choose one process from the set of willing processes

• Uses:
• Dist Databases: Google Spanner, Amazon DynamoDB, CockroachDB, TiDB.

• Blockchain Technology: enable nodes to agree on the validity and ordering of transactions.

• Cryptocurrencies: Bitcoin, Ethereum etc, rely on consensus algorithms to validate and confirm 
transactions, preventing double-spending and ensuring the integrity of the currency.

• Internet of Things (IoT): reach agreement on the state of sensor data

• Dist File Systems: Google File System (GFS), Amazon S3  and Hadoop File System

• Container orchestration: Kubernetes, Docker swarm.

© 2024 - Dr. Basit Qureshi 54



CONSENSUS

Why consensus is needed?

• Without consensus
• Processors may fail (some may need stable storage) 

• Messages may be lost, out of order, or duplicated 

• If delivered, messages are not corrupted

© 2024 - Dr. Basit Qureshi 55



CONSENSUS

Consensus GOAL

• AGREE on one result among a group of participants

Consensus Requirements

• Validity: Only proposed values may be selected (you can't make stuff up)

• Uniform agreement: No two nodes may select different values ( you agree with 
everyone else)

• Integrity: A node can select only a single value (you cannot change your mind)

• Termination: Every node will eventually decide on a value (you come to a 
decision)

© 2024 - Dr. Basit Qureshi 56



CONSENSUS

The Fischer Lynch Patterson (FLP) Impossibility

Consensus protocols with asynchronous communication & faulty 
processes, “Every protocol for this problem has the possibility of 

nontermination, even with only one faulty process”

• Impossibility of distributed consensus with one faulty process by Fischer, 
Lynch and Patterson

What does it mean?
• We cannot achieve consensus in bounded time, but we can, with partially 

synchronous networks 

• Partially synchronous = network with a bounded time for message delivery but 
we don't know ahead of time what that bound is 

• We can either wait long enough for messaging traffic so the protocol can complete 
or else terminate

© 2024 - Dr. Basit Qureshi 57



CONSENSUS

Common Consensus Algorithms

• Guarantee a leaders term

• In a partially synchronous system, a timeout-based failure detector may be inaccurate: 
it may suspect a node has, having crashed, when in fact the node is functioning fine, for 
example due to a spike in network latency

© 2024 - Dr. Basit Qureshi 58

Now we have two leaders !??



CONSENSUS

Common Consensus Algorithms

• Solution?

• Even after a node has been elected leader, it must act carefully

© 2024 - Dr. Basit Qureshi 59



CONSENSUS

• In decentralized systems, with no central authority, achieving consensus is 
crucial for ensuring the integrity and consistency of the shared data

1. If a node hasn’t received a message for some time, assume it is DEAD

2. When nodes suspect the current leader has failed: HOLD ELECTION

3. One or more nodes becomes a CANDIDATE 

4. Other nodes VOTE on whether they accept the candidate as their new leader. 

5. Election, the new LEADER:

• If a quorum of nodes vote in favor of the candidate, it becomes the new leader. 

• If a majority quorum is used, this vote can succeed as long as a majority of 
nodes (2 out of 3, or 3 out of 5, etc.) are working and able to communicate.

• Challenge: How do we get unanimous agreement on a given value?
© 2024 - Dr. Basit Qureshi 60



CONSENSUS

Common Consensus Algorithms

• Paxos: Lamport [ACM Transactions on Computer Systems - 1998]

• Multi-Paxos: Lamport [2000]

• Fast-Paxos: Lamport [2005]

• Raft: Diego Ongaro and John Ousterhout [USENIX Annual Technical Conference 
(ATC) 2014]

• Use
• Google: Google’s Chubby lock service, which manages distributed locks and data, is built on Paxos.
• Amazon Web Services (AWS): AWS uses Paxos within DynamoDB for distributed consensus and 

coordination of replica data storage.
• Microsoft: Paxos is integral to Microsoft’s Cosmos DB.

• Yahoo!: Zookeeper, now a Apache project. 
• Docker: Docker’s Swarm mode uses Raft to manage the state and roles of nodes in a Docker cluster
• Kubernetes: The Etcd data store uses Raft to maintain cluster state, including pod configurations, 

namespaces, and other metadata. 

© 2024 - Dr. Basit Qureshi 61



CONSENSUS

Common Consensus Algorithms

• Multi-Paxos, Raft, etc. use a leader to sequence messages. 
• Use a failure detector (timeout) to determine suspected crash or unavailability of 

leader. 

• On suspected leader crash, elect a new one. 

• Prevent two leaders at the same time (“split-brain”)

• Ensure ≤ 1 leader per term:
• Term is incremented every time a leader election is started 

• A node can only vote once per term 

• Require a quorum of nodes to elect a leader in a term

© 2024 - Dr. Basit Qureshi 62



CONSENSUS

Common Consensus Algorithms

• Paxos by Lamport (1989)
• Robust but complex to understand

• Multi-Paxos by Lamport (2001)
• Extended to work with multiple instances

• Fast-Paxos by Lamport (2005)
• An optimization of the original Paxos algorithm, aimed at reducing latency and 

improving efficiency

• Raft (2014)
• Specifically designed with understandability and ease of implementation in mind

• Paxos vs Raft (2020)
• Heidi Howard and Richard Mortier

© 2024 - Dr. Basit Qureshi 63

Heidi Howard, Richard Mortier, "Paxos vs Raft: have we reached consensus on distributed consensus?"  
Proceedings of the 7th Workshop on Principles and Practice of Consistency for Distributed Data, April 2020. 
https://doi.org/10.1145/3380787.3393681

https://doi.org/10.1145/3380787.3393681


© 2024 - Dr. Basit 

Qureshi

RAFT: A CONSENSUS 
ALGORITHM

FOR REPLICATED LOGS

Diego Ongaro and John Ousterhout

Stanford University

RAFT slides based on those from 

Diego Ongaro and John Ousterhout.



1. Leader election

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

6. Reconfiguration

65

Raft Overview



• At any given time, each server is either:

– Leader: handles all client interactions, log replication

– Follower: completely passive

– Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

66

Server States

Follower Candidate Leader



67

Liveness Validation

Follower Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

timeout,
new election

discover server with
 higher termdiscover current leader

or higher term

“step
down”

• Servers start as followers

• Leaders send heartbeats (empty AppendEntries RPCs) to 

maintain authority

• If electionTimeout elapses with no RPCs (100-500ms), 

follower assumes leader has crashed and starts new election 

(RequestVotes RPC)



68

Terms (aka epochs)

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

• Time divided into terms

– Election (either failed or resulted in 1 leader)

– Normal operation under a single leader

• Each server maintains current term value

• Key role of terms: identify obsolete information



69

Elections

• Start election:

– Increment current term, change to candidate state, vote for self

• Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:

• Become leader

• Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:

• Return to follower state

3. No-one wins election (election timeout elapses):

• Increment term, start new election



70

Elections

Servers

Voted for 

candidate A

B can’t also 

get majority

• Safety:  allow at most one winner per term

– Each server votes only once per term (persists on disk)

– Two different candidates can’t get majorities in same term

• Liveness: some candidate must eventually win

– Each choose election timeouts randomly in [T, 2T]

– One usually initiates and wins election before others start

– Works well if T >> network RTT 



71

Log Structure

1
add

1 2 3 4 5 6 7 8

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

• Log entry = < index, term, command >

• Log stored on stable storage (disk); survives crashes

• Entry committed if known to be stored on majority of servers

– Durable / stable, will eventually be executed by state machines



72

Normal operation

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

shl

• Client sends command to leader

• Leader appends command to its log

• Leader sends AppendEntries RPCs to followers

• Once new entry committed:

– Leader passes command to its state machine, sends result to client

– Leader piggybacks commitment to followers in later AppendEntries

– Followers pass committed commands to their state machines



• Crashed / slow followers?
– Leader retries RPCs until they succeed

• Performance is optimal in common case:
– One successful RPC to any majority of servers

73

Normal operation

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

add jmp mov shl

Log

Consensus
Module

State
Machine

shl



74

Log Operation:  Highly Coherent

1
add

1 2 3 4 5 6

3
jmp

1
cmp

1
ret

2
mov

3
div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

server1

server2

• If log entries on different server have same index and term:

– Store the same command

– Logs are identical in all preceding entries

• If given entry is committed, all preceding also committed



• AppendEntries has <index,term> of entry preceding new ones

• Follower must contain matching entry; otherwise it rejects

• Implements an induction step, ensures coherency

75

Log Operation:  Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:

matching entry

AppendEntries fails:

mismatch



• New leader’s log is truth, no special steps, start normal operation

– Will eventually make follower’s logs identical to leader’s

– Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries

76

Leader Changes

1 2 3 4 5 6 7log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5



• Raft safety property:  If leader has decided log entry is 
committed, entry will be present in logs of all future leaders

• Why does this guarantee higher-level goal?

1. Leaders never overwrite entries in their logs

2. Only entries in leader’s log can be committed

3. Entries must be committed before applying to state machine

77

Safety Requirement

Committed → Present in future leaders’ logs

Restrictions on

commitment

Restrictions on

leader election

Once log entry applied to a state machine, no other state 

machine must apply a different value for that log entry



78

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2
Unavailable during 
leader transition

Committed?
Can’t tell 

which entries 

committed!

s1

s2

• Elect candidate most likely to contain all committed entries

– In RequestVote, candidates incl. index + term of last log entry

– Voter V denies vote if its log is “more complete”:              

(newer term) or (entry in higher index of same term)

– Leader will have “most complete” log among electing majority



79

Committing Entry from Current Term

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2
Can’t be elected as
leader for term 3

AppendEntries just succeeded

Leader for term 2

• Case #1: Leader decides entry in current term is committed

• Safe: leader for term 3 must contain entry 4



80

Committing Entry from Earlier Term

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

AppendEntries just succeeded

Leader for term 4

3

• Case #2: Leader trying to finish committing entry from earlier

• Entry 3 not safely committed:

– s5 can be elected as leader for term 5 (how?)

– If elected, it will overwrite entry 3 on s1, s2, and s3



81

New Commitment Rules

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

4

4

3

Leader for term 4

• For leader to decide entry is committed:

1. Entry stored on a majority 

2. ≥ 1 new entry from leader’s term also on majority 

• Example;   Once e4 committed, s5 cannot be elected leader 

for term 5, and e3 and e4 both safe



Leader changes can result in log inconsistencies

82

Challenge:  Log Inconsistencies

1 41 1 4 5 5 6 6 6Leader for term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

Possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Missing

Entries

Extraneous

Entries

1 2 3 4 5 6 7 8 9 10 11 12



Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1

Followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• New leader must make follower logs consistent with its own

– Delete extraneous entries

– Fill in missing entries

• Leader keeps nextIndex for each follower:

– Index of next log entry to send to that follower

– Initialized to (1 + leader’s last index)

• If AppendEntries consistency check fails, decrement nextIndex, try again



Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1Before repair 2 2 33 3 3 32

(a)

(f)

1 1 1 4(f)

nextIndex

After repair



85

Neutralizing Old Leaders

Leader temporarily disconnected  

→ other servers elect new leader

→ old leader reconnected

→ old leader attempts to commit log entries

• Terms used to detect stale leaders (and candidates)

– Every RPC contains term of sender

– Sender’s term < receiver:

• Receiver: Rejects RPC (via ACK which sender processes…)

– Receiver’s term < sender:

• Receiver reverts to follower, updates term, processes RPC

• Election updates terms of majority of servers

– Deposed server cannot commit new log entries



86

Client Protocol

• Send commands to leader

– If leader unknown, contact any server, which redirects client to leader

• Leader only responds after command logged, 

committed, and executed by leader 

• If request times out (e.g., leader crashes):

– Client reissues command to new leader (after possible redirect)

• Ensure exactly-once semantics even with leader failures

– E.g., Leader can execute command then crash before responding

– Client should embed unique ID in each command

– This client ID included in log entry

– Before accepting request, leader checks log for entry with same id



RAFT

• An excellent visual representation of RAFT

• https://thesecretlivesofdata.com/raft/

© 2024 - Dr. Basit Qureshi 87

https://thesecretlivesofdata.com/raft/

	Slide 1: Distributed Mutual exclusion
	Slide 2: topics
	Slide 3: CS330 Operating systems (RECAP)
	Slide 4: Distributed mutual exclusion
	Slide 5: Dist mutual exclusion
	Slide 6: Dist mutual exclusion
	Slide 7: Dist mutual exclusion
	Slide 8: Dist mutual exclusion
	Slide 9: Dist mutual exclusion
	Slide 10: Dist mutual exclusion
	Slide 11: Dist mutual exclusion
	Slide 12: Dist mutual exclusion
	Slide 13: Dist mutual exclusion
	Slide 14: Dist mutual exclusion
	Slide 15: Dist mutual exclusion
	Slide 16: Dist mutual exclusion
	Slide 17: Dist mutual exclusion
	Slide 18: Dist mutual exclusion
	Slide 19: Dist mutual exclusion De-Centralized algorithms
	Slide 20: lamport mutual exclusion
	Slide 21: lamport mutual exclusion
	Slide 22: lamport mutual exclusion
	Slide 23: lamport mutual exclusion
	Slide 24: lamport mutual exclusion
	Slide 25: Ricart & agarwala mutual exclusion
	Slide 26: Ricart & agarwala mutual exclusion
	Slide 27: Ricart & agarwala mutual exclusion
	Slide 28: Ricart & agarwala mutual exclusion
	Slide 29: Lamport vs Ricart & agarwala mutual exclusion
	Slide 30: Comparison
	Slide 31: Lamport vs Ricart & agarwala mutual exclusion
	Slide 32: Contention- Based (Quorum) /  Leader Election algorithms
	Slide 33: Bully algorithm
	Slide 34: Bully algorithm
	Slide 35: Bully algorithm
	Slide 36: Bully algorithm
	Slide 37: Bully algorithm
	Slide 38: Bully algorithm
	Slide 39: Ring election algorithm
	Slide 40: Ring election algorithm
	Slide 41: Ring election algorithm
	Slide 42: Ring election algorithm
	Slide 43: Ring election algorithm
	Slide 44: Ring election algorithm
	Slide 45: Ring election algorithm
	Slide 46: Ring election algorithm
	Slide 47: Ring election algorithm
	Slide 48: Comparison
	Slide 49: Addressing network partitions in Contention- Based (Quorum) /  Leader Election algorithms
	Slide 50: Elections & Network Partitions
	Slide 51: consensus
	Slide 52: consensus
	Slide 53: consensus
	Slide 54: consensus
	Slide 55: consensus
	Slide 56: consensus
	Slide 57: consensus
	Slide 58: consensus
	Slide 59: consensus
	Slide 60: consensus
	Slide 61: consensus
	Slide 62: consensus
	Slide 63: consensus
	Slide 64: Raft: A Consensus Algorithm for Replicated Logs
	Slide 65: Raft Overview
	Slide 66: Server States
	Slide 67: Liveness Validation
	Slide 68: Terms (aka epochs)
	Slide 69: Elections
	Slide 70: Elections
	Slide 71: Log Structure
	Slide 72: Normal operation
	Slide 73: Normal operation
	Slide 74: Log Operation:  Highly Coherent
	Slide 75: Log Operation:  Consistency Check
	Slide 76: Leader Changes
	Slide 77: Safety Requirement
	Slide 78: Picking the Best Leader
	Slide 79: Committing Entry from Current Term
	Slide 80: Committing Entry from Earlier Term
	Slide 81: New Commitment Rules
	Slide 82: Challenge:  Log Inconsistencies
	Slide 83: Repairing Follower Logs
	Slide 84: Repairing Follower Logs
	Slide 85: Neutralizing Old Leaders
	Slide 86: Client Protocol
	Slide 87: raft

