
© 2024 - Dr. Basit Qureshi

CONSISTENCY,	DIST	
TRANSACTIONS	&	CAP	

THEOREM

TOPICS
• Distributed Transactions
• 2Phase Commit
• 3Phase Commit
• Consensus based Commit
• Linearizability
• CAP Theorem

2© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

DIST	TRANSACTIONS

TRANSACTIONS
“Consistency” means different things in different contexts”

“there is no one true definition of consistency"

© 2024 - Dr. Basit Qureshi 4

In Distributed Systems, we have transactions, where certain operations
describe a property of a state; e.g., a database is in a consistent or

inconsistent state, i.e., the state satisfies or violates certain invariants
defined by the application

TRANSACTIONS
“A Transaction is an operation that is composed of a sequence of discrete
steps. All the steps must be completed (committed) before the results are

made permanent.”

Otherwise, the transaction is aborted and the state of the system
reverts(rollback) to undo any changes.

© 2024 - Dr. Basit Qureshi 5

TRANSACTIONS
Example:
Book a flight from Riyadh to Columbus Ohio. No non-stop flights are
available:

Transaction begin
1. Reserve a seat for Riyadh to Newyork
2. Reserve a seat for Newyork to St Louis
3. Reserve a seat for St Louis to Columbus
Transaction end

If there are no seats available on the Newyork to St Louis; the entire
transaction is aborted and reservations for (1) and (2) are roll-backed.

© 2024 - Dr. Basit Qureshi 6

TRANSACTIONS
Transaction Basics:
– Begin: mark the start of a transaction

Do operations; read/write/compute data, modify files, objects, program state But any changes will
have to be restored if the transaction is aborted

– End: mark the end of a transaction – no more tasks
– Commit: make the results permanent
– Abort: kill the transaction, roll-back old values

© 2024 - Dr. Basit Qureshi 7

TRANSACTIONS
ACID
• Atomic
– The transaction completes as a single indivisible action. Everything succeeds or else the entire
transaction is rolled back. Others do not see intermediate results.

• Consistent
– A transaction cannot leave the resource in an inconsistent state & all invariants must be preserved. E.g.,
total amount of money in all accounts must be the same before and after a transfer funds transaction.

• Isolated (Serializable)
– Transactions cannot interfere with each other or see intermediate results. If transactions run at the
same time, the result must be the same as if they executed in some serial order.

• Durable
– Once a transaction commits, the results are made permanent.

© 2024 - Dr. Basit Qureshi 8

TRANSACTIONS
Distributed Transactions
• A transaction that reads or writes data on multiple nodes

• Data on these nodes may be replicas of the same dataset
• Or different parts of a larger dataset

• Challenge
• Handle machine, software, & network failures while preserving transaction integrity

© 2024 - Dr. Basit Qureshi 9

TRANSACTIONS
Distributed Transactions
• Each computer runs a transaction manager

• Responsible for sub-transactions on that system
• Performs PREPARE, COMMIT, and ABORT calls for sub-transactions

• Every sub-transaction must AGREE to commit changes before the overall transaction
can complete
• Caveat (Consensus)
• AGREE on a value proposed by at least one process
• BUT we need unanimous agreement (100%) to commit change

© 2024 - Dr. Basit Qureshi 10

TRANSACTIONS
Distributed Transactions
• Coordinator
• Propose to commit a transaction
• All participants agree ⇒ all participants then commit
• Not all participants agree ⇒ all participants then abort

© 2024 - Dr. Basit Qureshi 11

TRANSACTIONS
Distributed Transactions Algorithms must have:

• Safety (the algorithm must work correctly)
• If one sub-transaction commits, no other sub-transaction will abort
• If one sub-transaction needs to abort, no sub-transactions will commit

• Liveness (the algorithm must make progress & reach its goal)
• If no sub-transactions fail, the transaction will commit
• If any sub-transactions fail, the algorithm will reach a conclusion to abort

© 2024 - Dr. Basit Qureshi 12

© 2024 - Dr. Basit Qureshi

2PC

TWO	PHASE	COMMIT	PROTOCOL	(2PC)
• Two Phase Commit (2PC) ensures atomic

commitment.
• All processes in the transaction will agree to
• commit or abort

• One transaction manager is elected as a coordinator –
the rest are participants
• When a participant enters the prepared state:
• It contacts the coordinator to start the commit

protocol to commit the entire transaction

© 2024 - Dr. Basit Qureshi 14

TWO	PHASE	COMMIT	PROTOCOL	(2PC)
Phase 1: Voting
• Get commit agreement from every participant

© 2024 - Dr. Basit Qureshi 15

TWO	PHASE	COMMIT	PROTOCOL	(2PC)
Phase 2: Commit
• Send the results of the vote to every participant.

© 2024 - Dr. Basit Qureshi 16

TWO	PHASE	COMMIT	PROTOCOL	(2PC)
Dealing with failure (Voting)

Coordinator dies
• Some participants may have responded; others have no clue
⇒ Coordinator restarts voting: checks log; sees that voting was in progress

Participant dies
• The participant may have died before or after sending its vote to the coordinator
⇒ If coordinator received the vote: wait for other votes and then goes to Phase 2
⇒ Otherwise: wait for the participant to recover and respond (keep querying it)

© 2024 - Dr. Basit Qureshi 17

TWO	PHASE	COMMIT	PROTOCOL	(2PC)
Dealing with failure (Commit)

Coordinator dies
• Some participants may have been given commit/abort instructions
⇒ Coordinator restarts; checks log; informs all participants of chosen action

Participant dies
• The participant may have died before or after getting the commit/abort request
⇒ Coordinator keeps trying to contact the participant with the request
⇒ Participant recovers; checks log; gets request from coordinator
• If it committed/aborted, acknowledge the request
• Otherwise, process the commit/abort request and send back the

acknowledgement

© 2024 - Dr. Basit Qureshi 18

TWO	PHASE	COMMIT	PROTOCOL	(2PC)
Dealing with failure
• Another Participant can take over as coordinator
• Contact ALL participants to see how they voted
• If we get voting results from all participants
• We know that Phase 1 has completed
• If all participants voted to commit ⇒ send commit request
• Otherwise send abort request

• If ANY participant states that it has not voted
• We know that Phase 1 has not completed
• ⇒ Restart the protocol

• 2PC ensures Strong consistency…but … if any participant node also crashes,
we’re stuck

© 2024 - Dr. Basit Qureshi 19

© 2024 - Dr. Basit Qureshi

3PC

THREE	PHASE	COMMIT	PROTOCOL	(3PC)
Problem with 2PC
• A blocking protocol with failure modes that require all systems to recover eventually
• If the coordinator crashes, participants have no idea whether to commit or abort
• A recovery coordinator helps

• If a coordinator AND a participant crashes
• The system has no way of knowing the result of the transaction
• It might have committed at the crashed participant
• Hence all others must block

© 2024 - Dr. Basit Qureshi 21

THREE	PHASE	COMMIT	PROTOCOL	(3PC)
3PC
• Same as 2PC but ADD timeouts to each phase that result in an abort
• Propagate the result of the commit/abort vote to each participant before telling them

to act on it; this will allow us to recover the state of the transaction from any
participant and give more options for aborting

© 2024 - Dr. Basit Qureshi 22

THREE	PHASE	COMMIT	PROTOCOL	(3PC)
Phase 1: Voting
• Coordinator sends CanCommit? queries to participants & gets responses
• If the coordinator gets a timeout from any participant or any “No” replies are received

• Send an abort to all participants

• If a participant times out waiting for a request from the coordinator
• It aborts itself (assume coordinator crashed)

• Else continue to phase 2

© 2024 - Dr. Basit Qureshi 23

THREE	PHASE	COMMIT	PROTOCOL	(3PC)
Phase 2: Prepare to commit
• Send a prepare message to all participants
• Get OK messages from all participants

• We need to hear from all before proceeding so we can be sure the state of the protocol can be
properly recovered if the coordinator dies i.e. let all participants know the decision to commit

• If a participant times out: assume it crashed; send abort to all participants

© 2024 - Dr. Basit Qureshi 24

THREE	PHASE	COMMIT	PROTOCOL	(3PC)
Phase 3: Finalize
• Send commit messages to participants and get responses from all
• If participant times out: contact any other participant and move to that state (commit

or abort)
• If coordinator times out: abort

© 2024 - Dr. Basit Qureshi 25

THREE	PHASE	COMMIT	PROTOCOL	(3PC)
3PC Recovery
• If the coordinator crashes; a recovery node can query the state from any available participant
• Possible states that the participant may report:
Already committed
• That means that every other participant has received a Prepare to Commit
• Some participants may have committed ⇒ Send Commit message to all participants (just in case they

didn’t get it)
Not committed but received a Prepare message
• That means that all participants agreed to commit; some may have committed
• Send Prepare to Commit message to all participants (just in case they didn’t get it)
• Wait for everyone to acknowledge; then commit
Not yet received a Prepare message
• This means no participant has committed; some may have agreed
• Transaction can be aborted or the commit protocol can be restarted

© 2024 - Dr. Basit Qureshi 26

THREE	PHASE	COMMIT	PROTOCOL	(3PC)
3PC Weakness
• Suppose a coordinator sent a Prepare message to all participants

• All participants acknowledged the message
• BUT the coordinator died before it got all acknowledgements

• A recovery coordinator queries a participant.
• It continues with the commit: Sends Prepare, gets ACKs, sends Commit

• Around the same time…the original coordinator recovers
• Realizes it is still missing some replies from the Prepare
• Gets timeouts from some and decides to send an Abort to all participants

• Some processes may commit while others abort!
• 3PC works well when servers crash (fail-stop model) BUT it is not resilient to network partitions, fail-

recovery and extra latency

© 2024 - Dr. Basit Qureshi 27

© 2024 - Dr. Basit Qureshi

CONSENSUS	BASED	
COMMIT

3PC
Problem with 3PC
• Suppose a coordinator sent a Prepare message to all participants

• All participants acknowledged the message BUT the coordinator died before it got all
acknowledgements

• A recovery coordinator queries a participant; It continues with the commit: Sends Prepare, gets
ACKs, sends Commit

• Around the same time…the original coordinator recovers;
• Realizes it is still missing some replies from the Prepare;
• Gets timeouts from some and decides to send an Abort to all participants

• Some processes may commit while others abort!
• 3PC works well when servers crash (fail-stop model) But …

• 3PC is not resilient against fail-recover environments
• 3PC is not resilient against network partitions
• Also, 3PC involves an extra round of messages vs. 2PC → extra latency!

© 2024 - Dr. Basit Qureshi 29

CONSENSUS	BASED	COMMIT
• Consensus-based protocols (Raft, Paxos) are designed to be resilient

against network partitions
• But consensus protocols are designed to solve a different problem!
• Majority agreement makes sense in replicated state machines, not in distributed

transactions, where each sub-transaction has different responsibilities

• Can we make 2PC use a consensus algorithm?
• Turn the coordinator into a fault-tolerant replicated state machine
• Use replicated nodes to avoid blocking if the coordinator fails
• Run a consensus algorithm on the commit/abort decision of EACH participant

© 2024 - Dr. Basit Qureshi 30

CONSENSUS	BASED	COMMIT
• Each participant must get its chosen value
• can_commit or must_abort
• accepted by the majority of replicated nodes
• Transaction Leader
• Chosen via an election algorithm
• Coordinates the commit algorithm
• Not a single point of failure – we can elect a new one; Raft nodes store state

© 2024 - Dr. Basit Qureshi 31

CONSENSUS	BASED	COMMIT
• Some participant decides to begin to commit
• Sends a message to the Transaction Leader

• Transaction Leader: Sends a prepare message to each participant
• Each participant now sends a can_commit or must_abort message to its

instance of the consensus protocol
• All participants share the elected Transaction Leader
• “Can_commit” or “Must_abort” is sent to majority of followers
• Result is sent to the leader

• Transaction Leader tracks all instances of the commit protocol
• Commit iff every participant’s instance of the consensus protocol chooses

“can_commit”
• Tell each participant to commit or abort

© 2024 - Dr. Basit Qureshi 32

© 2024 - Dr. Basit Qureshi

LINEARIZABILITY

LINEARIZABILITY

Linearizability, aka, Atomic consistency or strong consistency, is a
consistency model for distributed systems that guarantees that each

operation appears to have occurred instantaneously at a single point in
time, known as its linearization point, and that operations from different

nodes appear to have executed in a sequential order

© 2024 - Dr. Basit Qureshi 34

LINEARIZABILITY

Linearizability ≠ Serializability

• Serializability means that transactions have the same effect as if they had
been executed in some serial order, but it does not define what that order
should be.
• Linearizability defines the values that operations must return, depending

on the concurrency and relative ordering of those operations

© 2024 - Dr. Basit Qureshi 35

LINEARIZABILITY
Multiple nodes concurrently accessing replicated data. How do we define
“consistency” here?
The strongest option: linearizability
• Informally: every operation takes effect atomically sometime after it started and before

it finished
• All operations behave as if executed on a single copy of the data (even if there are in

fact multiple replicas)
• Consequence: every operation returns an “up-to-date” value, a.k.a. “strong

consistency”
• Not just in distributed systems, also in shared-memory concurrency (memory on multi-

core CPUs is not linearizable by default!)

© 2024 - Dr. Basit Qureshi 36

LINEARIZABILITY
Read-after-Write consistency
• The client’s view of a get/set

operation as a rectangle covering
the period of time from the start to
finish of an operation.
• Inside the rectangle we write the

effect of the operation: set(x, v)
means updating the data item x to
have the value v, and get(x) → v
means a read of x that returns the
value v.

© 2024 - Dr. Basit Qureshi 37

LINEARIZABILITY
Read-after-Write consistency
• Focus on client-observable behavior: when and what

an operation returns
• Ignore how the replication system is implemented

internally
• Did operation A finish before operation B started?
• Even if the operations are on different nodes?
• This is not happens-before: we want client 2 to read

value written by client 1, even if the clients have not
communicated!

© 2024 - Dr. Basit Qureshi 38

LINEARIZABILITY
Read-after-Write consistency
• Client 2’s get operation overlaps in time with client 1’s

set operation
• Maybe the set operation takes effect first?
• Maybe the get operation is executed first?
• Either outcome is fine in this case

© 2024 - Dr. Basit Qureshi 39

NON-LINEARIZABILITY
Non-Linearizable despite
quorum reads/writes
• Linearizability is not only

about the relationship of a get
operation to a prior set
operation, but it can also
relate one get operation to
another.

EXAMPLE: Client 1 sets x to v1,

Update to replica A happens quickly,
while the updates to replicas B and
C are delayed.

© 2024 - Dr. Basit Qureshi 40

NON-LINEARIZABILITY
• Client 2 reads from a quorum of

{A, B}, receives responses {v0, v1},
and determines v1 to be the
newer value based on the
attached timestamp.

• After client 2’s read has finished,
client 3 starts a read from a
quorum of {B, C}, receives v0 from
both replicas, and returns v0
(since it is not aware of v1).

• Client 3 observes an older value
than client 2, even though the
real-time order of operations
would require client 3’s read to
return a value that is no older
than client 2’s result.

• This behavior is not allowed in a
linearizable system

© 2024 - Dr. Basit Qureshi 41

NON-LINEARIZABILITY

• Client 2’s operation finishes
before client 3’s operation
starts

• Linearizability therefore
requires client 3’s operation
to observe a state no older
than client 2’s operation

• This example violates
linearizability because v0 is
older than v1

© 2024 - Dr. Basit Qureshi 42

ATTIYA,	BAR-NOY,	AND	DOLEV	(ABD)	ALGORITHM
1.Write Operation:

• When a process wants to perform a write operation on the shared register, it assigns a timestamp to
the write operation and broadcasts the write request to all other processes.

• Upon receiving a write request, each process compares the timestamp of the incoming write
operation with the timestamp of the last known write operation.

• If the incoming write operation has a higher timestamp, the process updates its local copy of the
register with the new value and timestamp.

2.Read Operation:
• When a process wants to perform a read operation on the shared register, it sends a read request to

all other processes.
• Each process responds to the read request by sending back its local copy of the register value along

with its associated timestamp.
• The process collecting the responses chooses the value with the highest timestamp and returns it

as the result of the read operation.

© 2024 - Dr. Basit Qureshi 43

https://www.cs.huji.ac.il/course/2004/dist/p124-attiya.pdf

ATTIYA,	BAR-NOY,	AND	DOLEV	(ABD)	ALGORITHM
The ABD algorithm ensures consistency by enforcing a total order of write operations based on their

timestamps. This total order allows processes to determine the latest value written to the shared register
and ensures that all processes observe the same order of operations.

This ensures linearizability of get (quorum read) and set (blind write to quorum)

© 2024 - Dr. Basit Qureshi 44

https://groups.csail.mit.edu/tds/papers/Attiya/TM-423.pdf

SUMMARY	CONSISTENCY	MODELS
• Strong Consistency (Linearizability)

• Operations appear as if executed instantaneously and respect real-time
ordering.

• Banking systems (real-time, correctness-critical)

• Sequential Consistency
• All operations appear in a consistent global order for all clients, but this order

may not reflect real-time.
• Collaborative document editing (global order without real-time constraints).

• Read-Your-Writes Consistency
• Guarantees a client sees its own updates, but not necessarily updates from

other clients immediately.
• E-commerce shopping carts (personal updates visibility).

• Eventual Consistency
• No guarantees about the order of operations; replicas only converge

eventually.
• DNS systems (availability and eventual convergence).

© 2024 - Dr. Basit Qureshi 45

W
eaker consistency

© 2024 - Dr. Basit Qureshi

CAP	THEOREM

C A

P

The	following	slides	are	taken	from	Lecture	Notes	on	Dist	Systems	by
Prof.	Douglas Thain	@	University	of	Notre	Dame

CAP	THEOREM
• Brewer's theorem, is a fundamental principle in distributed computing

that states that it is impossible for a distributed data system to
simultaneously provide more than two out of three of the following
guarantees:

1. Consistency (C): Every read receives the most recent write or an error. In other words, all nodes in
the system have the same data at the same time, regardless of which node they communicate
with.

2. Availability (A): Every request receives a response, even if some nodes are down or unreachable.
In other words, the system remains operational and responsive to client requests under all
circumstances.

3. Partition tolerance (P): The system continues to operate despite network partitions that may
cause some nodes to be unreachable by others. In other words, the system remains functional and
maintains its guarantees even if there are network failures or splits.

47

In other words! When there is a network partition, you cannot guarantee both availability & consistency

CONSISTENCY	OR	AVAILABILITY
• Consistency and Availability is not “binary” decision
• AP systems relax consistency in favor of availability –

but are not inconsistent
• CP systems sacrifice availability for consistency- but

are not unavailable
• This suggests both AP and CP systems can offer a

degree of consistency, and availability, as well as
partition tolerance

C A
P

AP:	BEST	EFFORT	CONSISTENCY
• Example:
• Web Caching
• DNS

• Trait:
• Optimistic
• Expiration/Time-to-live
• Conflict resolution

CP:	BEST	EFFORT	AVAILABILITY
• Example:
• Majority protocols
• Distributed Locking (Google Chubby Lock service)

• Trait:
• Pessimistic locking
• Make minority partition unavailable

TYPES	OF	CONSISTENCY
• Strong Consistency
• After the update completes, any subsequent access will return the same updated

value.

• Weak Consistency
• It is not guaranteed that subsequent accesses will return the updated value.

• Eventual Consistency
• Specific form of weak consistency
• It is guaranteed that if no new updates are made to object, eventually all accesses

will return the last updated value (e.g., propagate updates to replicas in a lazy
fashion)

EVENTUAL	CONSISTENCY	VARIATIONS
• Causal consistency
• Processes that have causal relationship will see consistent data

• Read-your-write consistency
• A process always accesses the data item after it’s update operation and never sees

an older value

• Session consistency
• As long as session exists, system guarantees read-your-write consistency
• Guarantees do not overlap sessions

EVENTUAL	CONSISTENCY	VARIATIONS
• Monotonic read consistency
• If a process has seen a particular value of data item, any subsequent processes will

never return any previous values

• Monotonic write consistency
• The system guarantees to serialize the writes by the same process

• In practice
• A number of these properties can be combined
• Monotonic reads and read-your-writes are most desirable

EVENTUAL	CONSISTENCY	-	A	FACEBOOK	EXAMPLE
• Bob finds an interesting story and shares with Alice by posting on her

Facebook wall
• Bob asks Alice to check it out
• Alice logs in her account, checks her Facebook wall but finds:
 - Nothing is there!

EVENTUAL	CONSISTENCY	-	A	FACEBOOK	EXAMPLE
• Bob tells Alice to wait a bit and check out later
• Alice waits for a minute or so and checks back:
 - She finds the story Bob shared with her!

EVENTUAL	CONSISTENCY-	A	FACEBOOK	EXAMPLE
• Reason: it is possible because Facebook uses an eventual consistent

model
• Why Facebook chooses eventual consistent model over the strong

consistent one?
• Facebook has more than 1 billion active users
• It is non-trivial to efficiently and reliably store the huge amount of data generated

at any given time
• Eventual consistent model offers the option to reduce the load and improve

availability

EVENTUAL	CONSISTENCY-	A	DROPBOX	EXAMPLE
• Dropbox enabled immediate consistency via synchronization in many

cases.
• However, what happens in case of a network partition?

EVENTUAL	CONSISTENCY-	A	DROPBOX	EXAMPLE
• Let’s do a simple experiment here:
• Open a file in your drop box
• Disable your network connection (e.g., WiFi, 4G)
• Try to edit the file in the drop box: can you do that?
• Re-enable your network connection: what happens to your dropbox folder?

EVENTUAL	CONSISTENCY-	A	DROPBOX	EXAMPLE
• Dropbox embraces eventual consistency:
• Immediate consistency is impossible in case of a network partition
• Users will feel bad if their word documents freeze each time they hit Ctrl+S , simply

due to the large latency to update all devices across WAN
• Dropbox is oriented to personal syncing, not on collaboration, so it is not a real

limitation.

EVENTUAL	CONSISTENCY-	AN	ATM	EXAMPLE
• In design of automated teller machine (ATM):
• Strong consistency appear to be a nature choice
• However, in practice, A beats C
• Higher availability means higher revenue
• ATM will allow you to withdraw money even if the machine is partitioned from the

network
• However, it puts a limit on the amount of withdraw (e.g., $200)
• The bank might also charge you a fee when a overdraft happens

DYNAMIC	TRADEOFF	BETWEEN	C	AND	A
• An airline reservation system:
• When most of seats are available: it is ok to rely on somewhat out-of-date data,

availability is more critical
• When the plane is close to be filled: it needs more accurate data to ensure the

plane is not overbooked, consistency is more critical
• Neither strong consistency nor guaranteed availability, but it may significantly increase

the tolerance of network disruption

DISCUSSION
• In an e-commercial system (e.g., Amazon, e-Bay, etc), what are the trade-

offs between consistency and availability you can think of? What is your
strategy?
• Things you might want to consider:
• Different types of data (e.g., shopping cart, billing, inventory, etc.)
• Shopping cart: User needs to see accurate data.

• An outdated cart data can frustrate users. Use Eventual consistency

• Billing: Consistent data to avoid over-charging.
• Availability is less important than consistency. Strong consistency

• Inventory: User needs to see products even some of them are unavailable (stale data).
• Availability is important. Eventual Consistency

• Different types of operations (e.g., query, purchase, etc.)
• Querying: Queries should always respond, even if some replicas are temporarily unavailable.

• Prioritize availability.

• Checkout: The purchase flow must maintain data integrity
• It is acceptable to block or retry during network partitions to ensure strong consistency.

DISCUSSION
• Different types of services (e.g., distributed lock, DNS, etc.)
• Dist. locks on Inventory control:

• Ensure mutual exclusion for critical sections like stock updates. Availability can be sacrificed during network
partitions

• DNS lookups:
• Prioritize availability, as downtime disrupts all services. Use eventually consistent DNS caching (Stale data)

• Different groups of users (e.g., users in different geographic areas, etc.)
• Geographically Distributed Users: Users in distant regions might see slightly stale data

• Improve availability. Implement caching on the edge.

• High-value customers:
• Require stricter consistency guarantees to ensure a premium experience

PARTITIONING	EXAMPLES
1. Data Partitioning
2. Operational Partitioning
3. Functional Partitioning
4. User Partitioning
5. Hierarchical Partitioning

Caused by the possibility of failure in
distributed systems

High availability -> replicate data -> consistency problem

PARTITIONING	EXAMPLES
1. Data Partitioning
• Different data may require different consistency and availability
• Example:

• Shopping cart: high availability, responsive, can sometimes suffer anomalies
• Product information need to be available, slight variation in inventory is sufferable
• Checkout, billing, shipping records must be consistent

• YouTube:
• User subscriptions: Strong Consistency, Medium Availability
• Video Content: Eventual Consistency, High Availability
• View Counts: Eventual Consistency, High Availability
• Payment info: Strong Consistency, Medium Availability

PARTITIONING	EXAMPLES
2. Operational Partitioning
• Each operation may require different balance between consistency and

availability
• Example:

• Reads: high availability; e.g.., “query”
• Writes: high consistency, lock when writing; e.g., “purchase”

• Online banking, Cloud storage, Messaging apps, E-commerce platforms etc.
• WhatsApp
• Sending a message: Must be eventually consistent across devices
• Delivery/read receipts: Can tolerate delay
• Account registration: Requires strong consistency

PARTITIONING	EXAMPLES
3. Functional Partitioning
• System consists of sub-services
• Different sub-services provide different balances
• Example: A comprehensive distributed system

• Distributed lock service (e.g., Chubby) :
• Strong consistency

• DNS service:
• High availability

• Facebook (Meta) Sub-services:
• News Feed Service: Aggregates and ranks content.
• Messaging Service: Handles real-time communication (e.g., Messenger).
• Ads Service: Manages ad targeting and billing.
• Notification Service: Pushes updates and alerts.
• Profile Service: Manages user data and privacy.

PARTITIONING	EXAMPLES
4. User Partitioning
• Try to keep related data close together to assure better performance
• Example: Craglist
• Might want to divide its service into several data centers, e.g., east coast and west

coast
• Users get high performance (e.g., high availability and good consistency) if they

query servers closest to them
• Poorer performance if a New York user query Craglist in San Francisco

• Gmail: User mailboxes are partitioned by user, keeping all emails and settings for
one user close together.
• Spotify: User playlists, preferences, and playback history are stored together to

ensure smooth performance when browsing or playing music.

PARTITIONING	EXAMPLES
5. Hierarchical Partitioning
• Large global service with local “extensions”
• Different location in hierarchy may use different consistency
• Example:
• Amazon.com (amazon.sa)
• Local servers (better connected) guarantee more consistency and availability
• Global servers has more partition and relax one of the requirement

• Netflix?
• User playback progress and subscription state need strong consistency.
• Recommendations and viewing stats can tolerate eventual consistency

WHAT	IF	THERE	ARE	NO	PARTITIONS?
• Basic idea:
• Availability and latency are arguably the same thing: unavailable -> extreme high

latency
• Achieving different levels of consistency/availability takes different amount of time

Tradeoff between Consistency and Latency

CAP	->	PACELC
PACELC an extension of CAP Theorem?

Abadi, Daniel J. "Consistency tradeoffs in modern
distributed database system design." Computer-IEEE
Computer Magazine 45.2 (2012): 37.

• If there is a partition (P), how does the system trade off
availability and consistency (A and C); else (E), when the system
is running normally in the absence of partitions, how does the
system trade off latency (L) and consistency (C)?

P: Partition Tolerance
A: Availability
C: Consistency
E: Else
L: Latency
C: Consistency

PACELC

During a Partition (P):
• A distributed system must choose between:

• Availability (A): Ensuring the system continues to serve requests.
• Consistency (C): Ensuring the data remains consistent across replicas.

• This is the same trade-off described in the CAP theorem.
Else (E) (when there is no Partition):
• The system must choose between:

• Latency (L): Responding quickly to requests, even if it sacrifices some data consistency.
• Consistency (C): Maintaining strict consistency, which might introduce delays.

EXAMPLES
• Amazon DynamoDB (AELC):
• During a partition, prioritizes Availability over Consistency.
• Else, prioritizes Latency over strict Consistency, allowing eventual consistency for

faster performance.

• Google Spanner (PCEC):
• During a partition, prioritizes Consistency over Availability.
• Else, prioritizes strict Consistency over low Latency, ensuring globally consistent

reads/writes.

• Cassandra (AELC):
• During a partition, prioritizes Availability.
• Else, prioritizes Latency, offering tunable consistency levels.

PACELC
• PACELC gives a more realistic view of distributed systems. It's not just

about what happens during a failure, but also how systems behave under
normal operation—where latency and consistency are still a trade-off.

© 2024 - Dr. Basit Qureshi 75

