
© 2024 - Dr. Basit Qureshi

DIST.	FILE	SYSTEMS

TOPICS
• What is a file system?
• Big data and storage
• Dist File Systems
• Google File System
• Hadoop Dist File System

2© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

A	FILE	SYSTEM

WHAT	IS	A	FILE	SYSTEM?

© 2024 - Dr. Basit Qureshi 4

WHAT	IS	A	FILE	SYSTEM?

© 2024 - Dr. Basit Qureshi 5

Off system/online
storage/ secondary

memory

File system
abstraction/
Databases

Offline/ tertiary
memory/ DFS

RAID: Redundant
Array of

Inexpensive Disks

NAS: Network
Accessible Storage

SAN: Storage area
networks

A file system is a method or structure that a computer operating system uses to
organize, store, retrieve, and manage files and data on storage devices.

WHAT	IS	A	FILE	SYSTEM?

© 2024 - Dr. Basit Qureshi 6

!"#AB &D#(F*D+I-A. #A-/&A0F1"-AFO/*A0F&DF1 "-AF 3!0

4"- AF*D+I-A. #A-/&A0F1"-AF3!0F&DF5/#& "BI-/#F1 "-A0

6BBA00FBDO&#D-F*D+I-A. B7AB80F5A#*"00"DOF1D#FD5A#/&"DOF#A9IA0 &A+

4"- AF/BBA00F*D+I-A. #A/+0FD#F:#"&A0 F1"-AF+/&/FD#F/&&#";I&A0

<-DB8F*D+I-A. /BBA00A0F/O+F/- -DB/&A0 F+"08F;-DB80

!A="BAF*D+I-A. +"08F 3>?F/O+F;I11A#"O@

File Attribute Record
File System Modules

WHAT	IS	A	FILE	SYSTEM?

© 2024 - Dr. Basit Qureshi 7

UNIX file system operations

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.
count = read(filedes, buffer, n)
count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).
status = stat(name, buffer) Gets the file attributes for file name into buffer.

© 2024 - Dr. Basit Qureshi

BIG	DATA	AND	STORAGE

BIG	DATA	AND	STORAGE
• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from
disk

• ~4 months to read the web

• ~1,000 hard drives to store the web
• Takes even more to do something useful

with the data!
• Today, a standard architecture for such

problems is emerging:
• Cluster of commodity Linux nodes
• Commodity network (ethernet) to

connect them

© 2024 - Dr. Basit Qureshi 9

BIG	DATA	AND	STORAGE

© 2024 - Dr. Basit Qureshi 10

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

BIG	DATA	AND	STORAGE
• Large-scale computing for data mining problems on commodity hardware
• Challenges:

• How do you distribute computation?
• How can we make it easy to write distributed programs?
• Machines fail:

• One server may stay up 3 years (1,000 days)
• If you have 1,000 servers, expect to loose 1/day
• People estimated Google had ~1M machines in 2011

• 1,000 machines fail every day!

© 2024 - Dr. Basit Qureshi 11

BIG	DATA	AND	STORAGE
• Problem:

• If nodes fail, how to store data persistently?

• Answer:
• Distributed File System:

• Provides global file namespace
• Google GFS; Hadoop HDFS;

• Typical usage pattern
• Huge files (100s of GB to TB)
• Data is rarely updated in place
• Reads and appends are common

© 2024 - Dr. Basit Qureshi 12

© 2024 - Dr. Basit Qureshi

DISTRIBUTED	FILE	
SYSTEMS

DISTRIBUTED	FILE	SYSTEMS
• Present a single view of all files across multiple computers

• Shared directory structure
• Shared files

• Chunk servers
• File is split into contiguous chunks
• Typically each chunk is 16-128 MB
• Each chunk replicated (usually 2x or 3x)
• Try to keep replicas in different racks

• Master node
• a.k.a. Name Node in Hadoop’s HDFS
• Stores metadata about where files are stored
• Might be replicated

• Client library for file access
• Talks to master to find chunk servers
• Connects directly to chunk servers to access data

© 2024 - Dr. Basit Qureshi 14

DISTRIBUTED	FILE	SYSTEMS
Reliable distributed file system
• Data kept in “chunks” spread across machines
• Each chunk replicated on different machines

• Seamless recovery from disk or machine failure

© 2024 - Dr. Basit Qureshi 15

DISTRIBUTED	FILE	SYSTEMS
Desirable Properties from a DFS perspective
• Files are stored on a server machine

• Client machine(s) do RPCs to server to perform operations on file
• Transparency: client accesses DFS files as if it were accessing local (say, Unix) files

• Same API as local files, i.e., client code doesn’t change
• Need to make location, replication, etc. invisible to client

• Support concurrent clients
• Multiple client processes reading/writing the file concurrently

• Replication: for fault-tolerance
• One-copy update semantics: when file is replicated, its contents, as visible to clients,

are no different from when the file has exactly 1 replica

© 2024 - Dr. Basit Qureshi 16

DISTRIBUTED	FILE	SYSTEMS
• Naming?

• The process of translating a name into its corresponding resource or identifier
• File system organizes files in directories
• /etc/file.txt

• Directory structures differentiated by:
• Global vs Local naming:

• Single global structure or different for each user?
• /home/user/documents/file.txt

• Location transparency:
• Does the path name reveal anything about machine or server?
• /rack3/server1/documents/file.txt

• Location independence
• When a file moves between machines, does its path name change?

GLOBAL	DIRECTORY	STRUCTURE
• Combine local directory structures under a new common root

GLOBAL	DIRECTORY	STRUCTURE
• Problem with “Combine under new common root:”

• Using / for new root invalidates existing local names

• Solution (Unix United):
• Use / for local root
• Use .. to move to new root
• Example: reach u1 from u2: can use either

../../../S1/usr/u1

 or
/../S1/usr/u1

• Names are not location transparent

LOCAL	DIRECTORY	STRUCTURES

• Mounting
• Subtree on one machine is mounted over/in-the-place-of a directory on another machine (called the

mount point)
• Original contents of mount point are invisible during mount (so usually an empty directory is chosen)
• Structure changes dynamically
• Each user has own view of File System

On S1: /mp
On S2: /usr

On S1: /mp/u2/x
On S2: /usr/u2/x

SHARED	DIRECTORY	SUBSTRUCTURE

• Each machine has local file system
• One subtree is shared by all machines

SEMANTICS	OF	FILE	SHARING
• Unix semantics

• + All updates are immediately visible
• - Generates a lot of network traffic

• Session semantics
• + Updates visible when file closes
• - Simultaneous updates are unpredictable (lost)

• Transaction semantics
• Updates visible at end of transaction

• Immutable-files semantics
• Updates create a new version of file
• Now the problem is one of version management

Weaker

IMPLEMENTING	DFS
• Basic Architecture

• Client/Server Virtual file system (cf., Sun’s NFS):
• If file is local, access local file system
• If file is remote, communicate with remote server

IMPLEMENTING	DFS
• Caching reduces

• Network delay
• Disk access delay

• Server caching is simple
• No disk access on subsequent access
• No cache coherence problems
• But network delay still exists

• Client caching is more complicated
• When to update file on server?
• When/how to inform other processes when files is updated on server?

• Consistency problems!

IMPLEMENTING	DFS
Challenges
• When to update file on server?

• Write-through
• Allows Unix semantics but overhead is significant

• Delayed writing
• Requires weaker semantics

• Session semantics: only propagate update when file is closed
• Transaction semantics: only propagate updates at end of transactions

• How to propagate changes to other caches/replicas?
• Server initiates/informs other processes

• Violates client/server relationship
• Clients check periodically

• Checking before each access defeats purpose of caching
• Checking less frequently requires weaker semantics

• Session semantics: only check when opening the file

IMPLEMENTING	DFS

• Stateless vs. Stateful Server
• Stateful = Maintain state of open files
• Client passes commands & data

between user process & server

Problem when server crashes:
• State of open files is lost
• Client must restore state when server

recovers

IMPLEMENTING	DFS

• Stateless Server (e.g., NFS) =
Client maintains state of open files

• (Most) commands are idempotent
(can be repeated). (File deletion and
renaming aren’t). When server crashes:

• Client waits until server recovers
• Client reissues read/write commands

IMPLEMENTING	DFS
• File replication improves

• Availability: Multiple copies available
• Reliability: Multiple copies help in recovery
• Performance: Multiple copies remove bottlenecks and

reduce network latency
• Scalability: Multiple copies reduce bottlenecks

• Problem: File copies must be consistent
• Replication protocols

• Read-Any/Write-All
• Problem: What if a server is temporarily unavailable?

• Quorum-Based Read/Write
• N copies; r = read quorum; w = write quorum
• r+w > N and w > N/2
• Any read sees at least one current copy
• No disjoint writes

© 2024 - Dr. Basit Qureshi

GOOGLE	FILE	SYSTEM

The following slides are taken from Virginia Tech

Google File System

Google Disk Farm

Early days…

…today

Google File System

Design

n Design factors
¨ Failures are common (built from inexpensive

commodity components)
¨ Files

n large (multi-GB)
n mutation principally via appending new data
n low-overhead atomicity essential

¨ Co-design applications and file system API
¨ Sustained bandwidth more critical than low latency

n File structure
¨ Divided into 64 MB chunks
¨ Chunk identified by 64-bit handle
¨ Chunks replicated (default 3

replicas)
¨ Chunks divided into 64KB blocks
¨ Each block has a 32-bit checksum

…

chunk

file

blocks

Google File System

metadata

data

Architecture

n Master
¨ Manages namespace/metadata
¨ Manages chunk creation, replication, placement
¨ Performs snapshot operation to create duplicate of file or directory tree
¨ Performs checkpointing and logging of changes to metadata

n Chunkservers
¨ Stores chunk data and checksum for each block
¨ On startup/failure recovery, reports chunks to master
¨ Periodically reports sub-set of chunks to master (to detect no longer needed

chunks)

Google File System

Mutation operations

n Primary replica
¨ Holds lease assigned by master (60 sec. default)
¨ Assigns serial order for all mutation operations

performed on replicas

n Write operation
¨ 1-2: client obtains replica locations and identity of

primary replica
¨ 3: client pushes data to replicas (stored in LRU

buffer by chunk servers holding replicas)
¨ 4: client issues update request to primary
¨ 5: primary forwards/performs write request
¨ 6: primary receives replies from replica
¨ 7: primary replies to client

n Record append operation
¨ Performed atomically (one byte sequence)
¨ At-least-once semantics
¨ Append location chosen by GFS and returned to client
¨ Extension to step 5:

n If record fits in current chunk: write record and tell replicas the offset
n If record exceeds chunk: pad the chunk, reply to client to use next chunk

Google File System

Consistency Guarantees

n Write
¨ Concurrent writes may be consistent but undefined
¨ Write operations that are large or cross chunk boundaries

are subdivided by client into individual writes
¨ Concurrent writes may become interleaved

n Record append
¨ Atomically, at-least-once semantics
¨ Client retries failed operation
¨ After successful retry, replicas are defined

in region of append but may have
intervening undefined regions

n Application safeguards
¨ Use record append rather than write
¨ Insert checksums in record headers to detect fragments
¨ Insert sequence numbers to detect duplicates

primary

replica

consistent

primary

replica

defined

primary

replica

inconsistent

Google File System

Metadata management

n Namespace
¨ Logically a mapping from pathname to chunk list
¨ Allows concurrent file creation in same directory
¨ Read/write locks prevent conflicting operations
¨ File deletion by renaming to a hidden name; removed during regular scan

n Operation log
¨ Historical record of metadata changes
¨ Kept on multiple remote machines
¨ Checkpoint created when log exceeds threshold
¨ When checkpointing, switch to new log and create checkpoint in separate thread
¨ Recovery made from most recent checkpoint and subsequent log

n Snapshot
¨ Revokes leases on chunks in file/directory
¨ Log operation
¨ Duplicate metadata (not the chunks!) for the source
¨ On first client write to chunk:

n Required for client to gain access to chunk
n Reference count > 1 indicates a duplicated chunk
n Create a new chunk and update chunk list for duplicate

pathname lock chunk list
/home

/home/user

/home/user/foo

/save

write

read

read

Chunk88f703,…

Chunk6254ee0,…

Chunk8ffe07783,…

Chunk4400488,…Logical structure

Google File System

Chunk/replica management

n Placement
¨ On chunkservers with below-average disk space utilization
¨ Limit number of “recent” creations on a chunkserver (since access traffic

will follow)
¨ Spread replicas across racks (for reliability)

n Reclamation
¨ Chunk become garbage when file of which they are a part is deleted
¨ Lazy strategy (garbage college) is used since no attempt is made to

reclaim chunks at time of deletion
¨ In periodic “HeartBeat” message chunkserver reports to the master a

subset of its current chunks
¨ Master identifies which reported chunks are no longer accessible (i.e., are

garbage)
¨ Chunkserver reclaims garbage chunks

n Stale replica detection
¨ Master assigns a version number to each chunk/replica
¨ Version number incremented each time a lease is granted
¨ Replicas on failed chunkservers will not have the current version number
¨ Stale replicas removed as part of garbage collection

Google File System

Performance

© 2024 - Dr. Basit Qureshi

HADOOP	DIST	FILE	
SYSTEM

38© 2024 - Dr. Basit Qureshi

The following slides are taken from Prasanth Kothuri, CERN

Introduction to HDFS
Prasanth Kothuri, CERN

39

What’s HDFS
• HDFS is a distributed file system that is fault tolerant,

scalable and extremely easy to expand.
• HDFS is the primary distributed storage for Hadoop

applications.
• HDFS provides interfaces for applications to move

themselves closer to data.
• HDFS is designed to ‘just work’, however a working

knowledge helps in diagnostics and improvements.

40Introduction to HDFS

Components of HDFS
There are two (and a half) types of machines in a HDFS
cluster
• NameNode :– is the heart of an HDFS filesystem, it

maintains and manages the file system metadata. E.g;
what blocks make up a file, and on which datanodes
those blocks are stored.

• DataNode :- where HDFS stores the actual data, there
are usually quite a few of these.

41Introduction to HDFS

HDFS Architecture

42Introduction to HDFS

Unique features of HDFS
HDFS also has a bunch of unique features that make it ideal for distributed
systems:

• Failure tolerant - data is duplicated across multiple DataNodes to
protect against machine failures. The default is a replication factor of 3
(every block is stored on three machines).

• Scalability - data transfers happen directly with the DataNodes so your
read/write capacity scales fairly well with the number of DataNodes

• Space - need more disk space? Just add more DataNodes and re-
balance

• Industry standard - Other distributed applications are built on top of
HDFS (HBase, Map-Reduce)

HDFS is designed to process large data sets with write-once-read-many
semantics, it is not for low latency access

43Introduction to HDFS

HDFS – Data Organization
• Each file written into HDFS is split into data blocks
• Each block is stored on one or more nodes
• Each copy of the block is called replica
• Block placement policy

• First replica is placed on the local node
• Second replica is placed in a different rack
• Third replica is placed in the same rack as the second replica

44Introduction to HDFS

Read Operation in HDFS

45Introduction to HDFS

Write Operation in HDFS

46Introduction to HDFS

HDFS Security
• Authentication to Hadoop

• Simple – insecure way of using OS username to determine hadoop identity
• Kerberos – authentication using kerberos ticket
• Set by hadoop.security.authentication=simple|kerberos

• File and Directory permissions are same like in POSIX
• read (r), write (w), and execute (x) permissions
• also has an owner, group and mode
• enabled by default (dfs.permissions.enabled=true)

• ACLs are used for implemention permissions that differ
from natural hierarchy of users and groups
• enabled by dfs.namenode.acls.enabled=true

47Introduction to HDFS

HDFS Configuration
HDFS Defaults

• Block Size – 64 MB
• Replication Factor – 3
• Web UI Port – 50070

HDFS conf file - /etc/hadoop/conf/hdfs-site.xml
<property>

<name>dfs.namenode.name.dir</name>
<value>file:///data1/cloudera/dfs/nn,file:///data2/cloudera/dfs/nn</value>

</property>

<property>
<name>dfs.blocksize</name>
<value>268435456</value>

</property>

<property>
<name>dfs.replication</name>
<value>3</value>

</property>

<property>
<name>dfs.namenode.http-address</name>
<value>itracXXX.cern.ch:50070</value>

</property>

48Introduction to HDFS

Interfaces to HDFS

• Java API (DistributedFileSystem)
• C wrapper (libhdfs)
• HTTP protocol
• WebDAV protocol
• Shell Commands
However the command line is one of the simplest
and most familiar

Introduction to HDFS 49

HDFS – Shell Commands
There are two types of shell commands
User Commands

hdfs dfs – runs filesystem commands on the HDFS
hdfs fsck – runs a HDFS filesystem checking command

Administration Commands
hdfs dfsadmin – runs HDFS administration commands

50Introduction to HDFS

HDFS – User Commands (dfs)
List directory contents

Display the disk space used by files

51Introduction to HDFS

hdfs dfs –ls
hdfs dfs -ls /
hdfs dfs -ls -R /var

hdfs dfs -du -h /
hdfs dfs -du /hbase/data/hbase/namespace/
hdfs dfs -du -h /hbase/data/hbase/namespace/
hdfs dfs -du -s /hbase/data/hbase/namespace/

HDFS – User Commands (dfs)

Copy data to HDFS

Copy the file back to local filesystem

Introduction to HDFS 52

hdfs dfs -mkdir tdata
hdfs dfs -ls
hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata
hdfs dfs -ls –R

cd tutorials/data/
hdfs dfs –copyToLocal tdata/geneva.csv geneva.csv.hdfs
md5sum geneva.csv geneva.csv.hdfs

HDFS – User Commands (acls)
List acl for a file

List the file statistics – (%r – replication factor)

Write to hdfs reading from stdin

Introduction to HDFS 53

hdfs dfs -getfacl tdata/geneva.csv

hdfs dfs -stat "%r" tdata/geneva.csv

echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt
hdfs dfs -ls –R
hdfs dfs -cat tdataset/tfile.txt

HDFS – User Commands (fsck)
Removing a file

List the blocks of a file and their locations

Print missing blocks and the files they belong to

Introduction to HDFS 54

hdfs dfs -rm tdataset/tfile.txt
hdfs dfs -ls –R

hdfs fsck /user/cloudera/tdata/geneva.csv -
files -blocks –locations

hdfs fsck / -list-corruptfileblocks

HDFS – Adminstration Commands
Comprehensive status report of HDFS cluster

Prints a tree of racks and their nodes

Get the information for a given datanode (like ping)

55Introduction to HDFS

hdfs dfsadmin –report

hdfs dfsadmin –printTopology

hdfs dfsadmin -getDatanodeInfo
localhost:50020

HDFS – Advanced Commands
Get a list of namenodes in the Hadoop cluster

Dump the NameNode fsimage to XML file

The general command line syntax is
hdfs command [genericOptions] [commandOptions]

56Introduction to HDFS

hdfs getconf –namenodes

cd /var/lib/hadoop-hdfs/cache/hdfs/dfs/name/current
hdfs oiv -i fsimage_0000000000000003388 -o
/tmp/fsimage.xml -p XML

Other Interfaces to HDFS
HTTP Interface

MountableHDFS – FUSE

Once mounted all operations on HDFS can be performed using standard Unix
utilities such as 'ls', 'cd', 'cp', 'mkdir', 'find', 'grep',

Introduction to HDFS 57

http://quickstart.cloudera:50070

mkdir /home/cloudera/hdfs
sudo hadoop-fuse-dfs dfs://quickstart.cloudera:8020
/home/cloudera/hdfs

