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Off system/online 
storage/ secondary 

memory

File system 
abstraction/ 
Databases

Offline/ tertiary 
memory/ DFS

RAID: Redundant 
Array of 

Inexpensive Disks 

NAS: Network 
Accessible Storage

SAN: Storage area 
networks

A file system is a method or structure that a computer operating system uses to 
organize, store, retrieve, and manage files and data on storage devices.
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UNIX file system operations

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.
count = read(filedes, buffer, n)
count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).
status = stat(name, buffer) Gets the file attributes for file name into buffer.
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BIG	DATA	AND	STORAGE
• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from 
disk

• ~4 months to read the web

• ~1,000 hard drives to store the web
• Takes even more to do something useful 

with the data!
• Today, a standard architecture for such 

problems is emerging:
• Cluster of commodity Linux nodes
• Commodity network (ethernet) to 

connect them
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BIG	DATA	AND	STORAGE
• Large-scale computing for data mining problems on commodity hardware
• Challenges:

• How do you distribute computation?
• How can we make it easy to write distributed programs?
• Machines fail:

• One server may stay up 3 years (1,000 days)
• If you have 1,000 servers, expect to loose 1/day
• People estimated Google had ~1M machines in 2011

• 1,000 machines fail every day!
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BIG	DATA	AND	STORAGE
• Problem:

• If nodes fail, how to store data persistently? 

• Answer:
• Distributed File System:

• Provides global file namespace
• Google GFS; Hadoop HDFS;

• Typical usage pattern
• Huge files (100s of GB to TB)
• Data is rarely updated in place
• Reads and appends are common
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DISTRIBUTED	FILE	SYSTEMS
• Present a single view of all files across multiple computers

• Shared directory structure
• Shared files

• Chunk servers
• File is split into contiguous chunks
• Typically each chunk is 16-128 MB
• Each chunk replicated (usually 2x or 3x)
• Try to keep replicas in different racks

• Master node
• a.k.a. Name Node in Hadoop’s HDFS
• Stores metadata about where files are stored
• Might be replicated

• Client library for file access
• Talks to master to find chunk servers 
• Connects directly to chunk servers to access data

© 2024 - Dr. Basit Qureshi 14



DISTRIBUTED	FILE	SYSTEMS
Reliable distributed file system
• Data kept in “chunks” spread across machines
• Each chunk replicated on different machines 

• Seamless recovery from disk or machine failure
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DISTRIBUTED	FILE	SYSTEMS
Desirable Properties from a DFS perspective
• Files are stored on a server machine

• Client machine(s) do RPCs to server to perform operations on file
• Transparency: client accesses DFS files as if it were accessing local (say, Unix) files

• Same API as local files, i.e., client code doesn’t change
• Need to make location, replication, etc. invisible to client

• Support concurrent clients
• Multiple client processes reading/writing the file concurrently

• Replication: for fault-tolerance
• One-copy update semantics: when file is replicated, its contents, as visible to clients, 

are no different from when the file has exactly 1 replica

© 2024 - Dr. Basit Qureshi 16



DISTRIBUTED	FILE	SYSTEMS
• Naming? 

• The process of translating a name into its corresponding resource or identifier
• File system organizes files in directories
• /etc/file.txt

• Directory structures differentiated by:
• Global vs Local naming:

• Single global structure or different for each user?
• /home/user/documents/file.txt

• Location transparency:
• Does the path name reveal anything about machine or server?
• /rack3/server1/documents/file.txt

• Location independence
• When a file moves between machines, does its path name change?



GLOBAL	DIRECTORY	STRUCTURE
• Combine local directory structures under a new common root



GLOBAL	DIRECTORY	STRUCTURE
• Problem with “Combine under new common root:”

• Using  / for new root invalidates existing local names

• Solution (Unix United):
• Use / for local root
• Use .. to move to new root
• Example: reach u1 from u2: can use either

../../../S1/usr/u1   

 or
/../S1/usr/u1

• Names are not location transparent



LOCAL	DIRECTORY	STRUCTURES

• Mounting
• Subtree on one machine is mounted over/in-the-place-of a directory on another machine (called the 

mount point)
• Original contents of mount point are invisible during mount (so usually an empty directory is chosen)
• Structure changes dynamically
• Each user has own view of File System

On S1:  /mp
On S2:  /usr

On S1:  /mp/u2/x
On S2:  /usr/u2/x



SHARED	DIRECTORY	SUBSTRUCTURE

• Each machine has local file system
• One subtree is shared by all machines



SEMANTICS	OF	FILE	SHARING
• Unix semantics

• + All updates are immediately visible
• - Generates a lot of network traffic

• Session semantics
• + Updates visible when file closes
• - Simultaneous updates are unpredictable (lost)

• Transaction semantics
• Updates visible at end of transaction

• Immutable-files semantics
• Updates create a new version of file
• Now the problem is one of version management

Weaker 



IMPLEMENTING	DFS
• Basic Architecture

• Client/Server Virtual file system (cf., Sun’s NFS):
• If file is local, access local file system
• If file is remote, communicate with remote server



IMPLEMENTING	DFS
• Caching reduces

• Network delay
• Disk access delay

• Server caching is simple
• No disk access on subsequent access
• No cache coherence problems
• But network delay still exists

• Client caching is more complicated
• When to update file on server?
• When/how to inform other processes when files is updated on server?

• Consistency problems!



IMPLEMENTING	DFS
Challenges
• When to update file on server?

• Write-through
• Allows Unix semantics but overhead is significant

• Delayed writing
• Requires weaker semantics

• Session semantics: only propagate update when file is closed
• Transaction semantics: only propagate updates at end of transactions

• How to propagate changes to other caches/replicas?
• Server initiates/informs other processes

• Violates client/server relationship
• Clients check periodically

• Checking before each access defeats purpose of caching
• Checking less frequently requires weaker semantics

• Session semantics: only check when opening the file



IMPLEMENTING	DFS

• Stateless vs. Stateful Server
• Stateful = Maintain state of open files
• Client passes commands & data

between user process & server

Problem when server crashes:
• State of open files is lost
• Client must restore state when server 

recovers



IMPLEMENTING	DFS

• Stateless Server (e.g., NFS)  = 
Client maintains state of open files

• (Most) commands are idempotent
(can be repeated). (File deletion and
renaming aren’t). When server crashes:

• Client waits until server recovers
• Client reissues read/write commands



IMPLEMENTING	DFS
• File replication improves

• Availability: Multiple copies available
• Reliability: Multiple copies help in recovery
• Performance: Multiple copies remove bottlenecks and 

reduce network latency
• Scalability: Multiple copies reduce bottlenecks

• Problem: File copies must be consistent
• Replication protocols

• Read-Any/Write-All
• Problem: What if a server is temporarily unavailable?

• Quorum-Based Read/Write
• N copies; r = read quorum; w = write quorum
• r+w > N and w > N/2
• Any read sees at least one current copy
• No disjoint writes
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The following slides are taken from Virginia Tech



Google File System

Google Disk Farm

Early days…

…today



Google File System

Design

n Design factors
¨ Failures are common (built from inexpensive 

commodity components)
¨ Files

n large (multi-GB)
n mutation principally via appending new data
n low-overhead atomicity essential

¨ Co-design applications and file system API
¨ Sustained bandwidth more critical than low latency

n File structure
¨ Divided into 64 MB chunks
¨ Chunk identified by 64-bit handle
¨ Chunks replicated (default 3 

replicas)
¨ Chunks divided into 64KB blocks
¨ Each block has a 32-bit checksum

…

chunk

file

blocks



Google File System

metadata

data

Architecture

n Master 
¨ Manages namespace/metadata
¨ Manages chunk creation, replication, placement
¨ Performs snapshot operation to create duplicate of file or directory tree
¨ Performs checkpointing and logging of changes to metadata

n Chunkservers
¨ Stores chunk data and checksum for each block
¨ On startup/failure recovery, reports chunks to master
¨ Periodically reports sub-set of chunks to master (to detect no longer needed 

chunks)



Google File System

Mutation operations

n Primary replica
¨ Holds lease assigned by master (60 sec. default)
¨ Assigns serial order for all mutation operations 

performed on replicas

n Write operation
¨ 1-2: client obtains replica locations and identity of 

primary replica
¨ 3: client pushes data to replicas (stored in LRU 

buffer by chunk servers holding replicas)
¨ 4: client issues update request to primary
¨ 5: primary forwards/performs write request
¨ 6: primary receives replies from replica
¨ 7: primary replies to client

n Record append operation
¨ Performed atomically (one byte sequence)
¨ At-least-once semantics
¨ Append location chosen by GFS and returned to client
¨ Extension to step 5:

n If record fits in current chunk: write record and tell replicas the offset
n If record exceeds chunk: pad the chunk, reply to client to use next chunk



Google File System

Consistency Guarantees

n Write
¨ Concurrent writes may be consistent but undefined 
¨ Write operations that are large or cross chunk boundaries 

are  subdivided by client into individual writes 
¨ Concurrent writes may become interleaved

n Record append
¨ Atomically, at-least-once semantics
¨ Client retries failed operation
¨ After successful retry, replicas are defined 

in region of append but may have 
intervening undefined regions

n Application safeguards
¨ Use record append rather than write
¨ Insert checksums in record headers to detect fragments
¨ Insert sequence numbers to detect duplicates

primary

replica

consistent

primary

replica

defined

primary

replica

inconsistent



Google File System

Metadata management

n Namespace
¨ Logically a mapping from pathname to chunk list
¨ Allows concurrent file creation in same directory
¨ Read/write locks prevent conflicting operations
¨ File deletion by renaming to a hidden name; removed during regular scan

n Operation log
¨ Historical record of metadata changes
¨ Kept on multiple remote machines
¨ Checkpoint created when log exceeds threshold
¨ When checkpointing, switch to new log and create checkpoint in separate thread
¨ Recovery made from most recent checkpoint and subsequent log

n Snapshot
¨ Revokes leases on chunks in file/directory
¨ Log operation
¨ Duplicate metadata (not the chunks!) for the source
¨ On first client write to chunk:

n Required for client to gain access to chunk
n Reference count > 1 indicates a duplicated chunk
n Create a new chunk and update chunk list for duplicate

pathname lock chunk list
/home

/home/user

/home/user/foo

/save

write

read

read

Chunk88f703,…

Chunk6254ee0,…

Chunk8ffe07783,…

Chunk4400488,…Logical structure



Google File System

Chunk/replica management

n Placement
¨ On chunkservers with below-average disk space utilization
¨ Limit number of “recent” creations on a chunkserver (since access traffic 

will follow)
¨ Spread replicas across racks (for reliability)

n Reclamation
¨ Chunk become garbage when file of which they are a part is deleted 
¨ Lazy strategy (garbage college) is used since no attempt is made to 

reclaim chunks at time of deletion
¨ In periodic “HeartBeat” message chunkserver reports to the master a 

subset of its current chunks
¨ Master identifies which reported chunks are no longer accessible (i.e., are 

garbage)
¨ Chunkserver reclaims garbage chunks

n Stale replica detection
¨ Master assigns a version number to each chunk/replica
¨ Version number incremented each time a lease is granted
¨ Replicas on failed chunkservers will not have the current version number
¨ Stale replicas removed as part of garbage collection



Google File System

Performance
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The following slides are taken from Prasanth Kothuri, CERN



Introduction to HDFS
Prasanth Kothuri, CERN
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What’s HDFS
• HDFS is a distributed file system that is fault tolerant, 

scalable and extremely easy to expand.
• HDFS is the primary distributed storage for Hadoop 

applications.
• HDFS provides interfaces for applications to move

themselves closer to data.
• HDFS is designed to ‘just work’, however a working 

knowledge helps in diagnostics and improvements.
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Components of HDFS
There are two (and a half) types of machines in a HDFS 
cluster
• NameNode :– is the heart of an HDFS filesystem,  it 

maintains and manages the file system metadata. E.g; 
what blocks make up a file, and on which datanodes
those blocks are stored.

• DataNode :- where HDFS stores the actual data, there 
are usually quite a few of these.
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HDFS Architecture
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Unique features of HDFS
HDFS also has a bunch of unique features that make it ideal for distributed 
systems:

• Failure tolerant - data is duplicated across multiple DataNodes to 
protect against machine failures. The default is a replication factor of 3 
(every block is stored on three machines).

• Scalability - data transfers happen directly with the DataNodes so your 
read/write capacity scales fairly well with the number of DataNodes

• Space - need more disk space? Just add more DataNodes and re-
balance

• Industry standard - Other distributed applications are built on top of 
HDFS (HBase, Map-Reduce)

HDFS is designed to process large data sets with write-once-read-many 
semantics, it is not for low latency access
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HDFS – Data Organization
• Each file written into HDFS is split into data blocks
• Each block is stored on one or more nodes
• Each copy of the block is called replica
• Block placement policy

• First replica is placed on the local node
• Second replica is placed in a different rack
• Third replica is placed in the same rack as the second replica
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Read Operation in HDFS
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Write Operation in HDFS
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HDFS Security
• Authentication to Hadoop

• Simple – insecure way of using OS username to determine hadoop identity
• Kerberos – authentication using kerberos ticket
• Set by hadoop.security.authentication=simple|kerberos

• File and Directory permissions are same like in POSIX
• read (r), write (w), and execute (x) permissions
• also has an owner, group and mode
• enabled by default (dfs.permissions.enabled=true)

• ACLs are used for implemention permissions that differ 
from natural hierarchy of users and groups
• enabled by dfs.namenode.acls.enabled=true
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HDFS Configuration
HDFS Defaults

• Block Size – 64 MB
• Replication Factor – 3
• Web UI Port – 50070

HDFS conf file - /etc/hadoop/conf/hdfs-site.xml
<property>

<name>dfs.namenode.name.dir</name>
<value>file:///data1/cloudera/dfs/nn,file:///data2/cloudera/dfs/nn</value>

</property>

<property>
<name>dfs.blocksize</name>
<value>268435456</value>

</property>

<property>
<name>dfs.replication</name>
<value>3</value>

</property>

<property>
<name>dfs.namenode.http-address</name>
<value>itracXXX.cern.ch:50070</value>

</property>
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Interfaces to HDFS

• Java API (DistributedFileSystem)
• C wrapper (libhdfs)
• HTTP protocol
• WebDAV protocol
• Shell Commands
However the command line is one of the simplest 
and most familiar
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HDFS – Shell Commands
There are two types of shell commands
User Commands

hdfs dfs – runs filesystem commands on the HDFS
hdfs fsck – runs a HDFS filesystem checking command

Administration Commands
hdfs dfsadmin – runs HDFS administration commands
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HDFS – User Commands (dfs)
List directory contents

Display the disk space used by files
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hdfs dfs –ls
hdfs dfs -ls /
hdfs dfs -ls -R /var

hdfs dfs -du -h /
hdfs dfs -du /hbase/data/hbase/namespace/
hdfs dfs -du -h /hbase/data/hbase/namespace/
hdfs dfs -du -s /hbase/data/hbase/namespace/



HDFS – User Commands (dfs)

Copy data to HDFS

Copy the file back to local filesystem
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hdfs dfs -mkdir tdata
hdfs dfs -ls
hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata
hdfs dfs -ls –R

cd tutorials/data/
hdfs dfs –copyToLocal tdata/geneva.csv geneva.csv.hdfs
md5sum geneva.csv geneva.csv.hdfs



HDFS – User Commands (acls)
List acl for a file

List the file statistics – (%r – replication factor)

Write to hdfs reading from stdin
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hdfs dfs -getfacl tdata/geneva.csv

hdfs dfs -stat "%r" tdata/geneva.csv

echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt
hdfs dfs -ls –R
hdfs dfs -cat tdataset/tfile.txt



HDFS – User Commands (fsck)
Removing a file

List the blocks of a file and their locations

Print missing blocks and the files they belong to
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hdfs dfs -rm tdataset/tfile.txt
hdfs dfs -ls –R

hdfs fsck /user/cloudera/tdata/geneva.csv -
files -blocks –locations

hdfs fsck / -list-corruptfileblocks



HDFS – Adminstration Commands
Comprehensive status report of HDFS cluster

Prints a tree of racks and their nodes

Get the information for a given datanode (like ping)
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hdfs dfsadmin –report 

hdfs dfsadmin –printTopology

hdfs dfsadmin -getDatanodeInfo 
localhost:50020



HDFS – Advanced Commands
Get a list of namenodes in the Hadoop cluster

Dump the NameNode fsimage to XML file

The general command line syntax is
hdfs command [genericOptions] [commandOptions]
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hdfs getconf –namenodes

cd /var/lib/hadoop-hdfs/cache/hdfs/dfs/name/current
hdfs oiv -i fsimage_0000000000000003388 -o 
/tmp/fsimage.xml -p XML



Other Interfaces to HDFS
HTTP Interface

MountableHDFS – FUSE

Once mounted all operations on HDFS can be performed using standard Unix 
utilities such as 'ls', 'cd', 'cp', 'mkdir', 'find', 'grep',
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http://quickstart.cloudera:50070

mkdir /home/cloudera/hdfs
sudo hadoop-fuse-dfs dfs://quickstart.cloudera:8020 
/home/cloudera/hdfs


