© 2024 - Dr. Basit Qureshi

JUalw ol acola
PRINCE SULTAN |

CS435 DistributelEaManl

. 4
B

4

SECURITY IN DIST DT e sit Qureshi
J5 ‘S 1
SYSTEMS M PERA SMTEEE MACM
e R - -

-

= -
(© ._m
c 5
W = _ S
)
Prm— ﬁ
a® s w2
S = S
o S g3
= O = <

- 7 \\\\\\\\\é \
Yy \ \\\\\\\\\\\\\\\\\

© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

CS435 DistributelEaManl

4
r

CIA '+Dr. Basit Qureshi
SRR A SMIEEE MACM

S ,’g‘%“c - .’

-2
—

-

T

CIA

* Confidentiality: Hide data and resources

* Data Integrity: Data is not modified or destroyed
* Availability : Ability of access data/resources

Turning off a computer provides confidentiality & integrity but hurts availability
§ DDOS Attack affects availability

\

A\

Identification Authentication
© 2024 - Dr. Basit Qureshi

Authorization

\

N

\&Q\\\\
N

4. //////////////////////

7 mz////////;,///

Y i

4

CIA

Security is not just adding encryption ...

e or using a 512-bit key instead of a 64-bit key ...
e or changing passwords ...

* or setting up a firewall

* Itis a SYSTEMS ISSUE = Hardware + firmware + OS + app software + networking +
people = Processes & procedures, policies, detection, forensics

“Security is a chain: it’s only as secure as the weakest link” — Bruce Schneier

© 2024 - Dr. Basit Qureshi

" /4
W, /
7781

CIA

The OS handles security issues

* User authentication — passwords, etc

* Access control —file permissions, etc

* Resource management — memory limits, etc

 But it can only control resources it owns

Distributed systems

///////////// 4

* Programs may:

LI
7 e

* Use components that belong to different entities

74

Call remote services — are they trustworthy?

Receive requests — are they from a legitimate & authorized user or service?
Store data on remote servers —who manages them?

Send data over a network — what route do the packets take?

Cryptography is the solution!
© 2024 - Dr. Basit Qureshi

///?///;///

//W

W

7 Iy

CRYPTOGRAPHY

Confidentiality: Others cannot read contents of the message
Authentication: Determine origin of message
Integrity: Verify that message has not been modified

Non-repudiation: Sender should not be able to falsely deny that a message
was sent

© 2024 - Dr. Basit Qureshi

CS435 DistributelEaManl

f 4
»

4

CONFIDENTIALITY ns-Dr. Basit Qureshi
| PEA SMTEEE MACM

) 5 -
--c'-'f*” | ,}" . “ -2

-

///////////// 4

4

7,

/’////
) /7/////

)

CONFIDENTIALITY
Encryption key terms:

* Plaintext (cleartext) message P

* Cipher = cryptographic algorithm
* Encryption E(P)

* Produces Ciphertext, C = E(P)
* Decryption, P = D(C)

© 2024 - Dr. Basit Qureshi

CONFIDENTIALITY

A good crypto system

* Ciphertext should be indistinguishable from random values

/////////////// 4

o

Y
7

* Given ciphertext, there should be no way to extract the original plaintext or the key
short of enumerating all possible keys (i.e., a brute force attack)

V7 24

* The keys should be large enough that a brute force attack is not feasible

© 2024 - Dr. Basit Qureshi

10

77
Yy

CONFIDENTIALITY

Symmetric Key cyphers
Same shared secret key, K, for encryption & decryption C = E (P); P = D.(C)

Alice Shared secret key, K Bob
=| E«P) % . U/ bio)|=
§ encrypt message with decrypt message with
\ the shared key, K the shared key, K
\ — 7 7 —
\ =| 20 =0 E
?§§ decrypt message with encrypt message with
\\\§§ the shared key, K the shared key, K
N\

o

Popular symmetric cyphers: AES, DES, 3DES, ChaCha20, IDEA

© 2024 - Dr. Basit Qureshi

11

7%

. i

4

CONFIDENTIALITY

Public Key cryptography

Two related keys (A, a)

C =EL(P) P=D,(C) A is a public key
C'=E,(P) P=D,(C’) a is a private key

Examples: RSA, Elliptic Curve Cryptography (ECC)

Different keys for encrypting and decrypting — No need to worry about secure key
distribution

© 2024 - Dr. Basit Qureshi

12

Wi
g

N7,

7

Y

7%

g

i

CONFIDENTIALITY

Public Key cryptography

o

V2%

© 2024 - Dr. Basit Qureshi

Alice

Alice’s public key: K4

Bob

iy,

Alice’s private key: K.)

Bob’s public key: Kg

Ex(P) W/
Y

encrypt message with
Bob’s public key

© Y
(D(C)

/.

decrypt message with
Alice’s private key

(Bob’s private key: Ky)

/,
Z Dy(C)

decrypt message with
Bob’s private key

Z _E4P)

/i

encrypt message with
Alice’s public key

13

/////////////////////

4N /,W//%/

V.

CONFIDENTIALITY
* Both parties must agree on a secret key, K

Key distribution must be secret; Otherwise, messages can be decrypted; Users can be
impersonated

Ex(P) %

Bob

* Message is encrypted, sent, decrypted at other side

» % Dx(Cl

Alice

Secure key distribution is the biggest problem with symmetric cryptography

© 2024 - Dr. Basit Qureshi

14

\
A\
N

//////////////// /

J //7/%/////

,,,//////’;2/// 7

/ ////////////ﬂ

CONFIDENTIALITY

Sharing Keys:

* Pre-shared keys — Initial configuration, out of band (send via USB key,
recite, ...)

* Trusted third party
* Knows all keys
 Alice creates a temporary key (session key)
* Encrypts it with her key
* sends to Trent
* Trent decrypts it and sends it to Bob
* Alternatively: Trent creates a session key — encrypts it for Alice & for Bob

* Public key cryptography
* Alice encrypts a message with Bob’s public key
* Only Bob can decrypt

74

CONFIDENTIALITY

* Trusted third party
 Trusted third party, Trent, knows all the keys

. 1. Bob creates a random session key, K
g Everyone else Only knows their own keyS 2. Bob encrypts it with his secret key: Eg(K)
3. Bob sends Eg(K) to Trent
o 4. Trent decrypts using Bob’s key
g f AB\I'(;:? Skkey 5. Trent encrypts K for Alice: E4(K)
\ - So S e‘)(/ 6. Trent sends E,(K) to Alice
§ K = Session key De(C) " 7. Alice decrypts K=D4(K)
\ 7
i\\\ EAl
'\ Es(K) K This is the key exchange
\
\\ process
\ Trent
A
\
\
\ Bob Alice

/7

© 2024 - Dr. Basit Qureshi 16

T

// 7

\
\
N\
N\
N 3\
LAY
SN
\
\\
\ N
N
A
AN
N
AN
\‘
\ \

CONFIDENTIALITY

* Trusted third party

H 1. Bob creates a random session key, K
. continued 2. Bob encrypts it with his secret key: Eg(K)

3. Bob sends Eg(K) to Trent
4. Trent decrypts using Bob’s key
5. Trent encrypts K for Alice: E4(K)

A= A“C‘;"S key 6. Trent sends E,(K) to Alice

B = Bob’s key 7. Alice decrypts K=Da(K)

K = Session key 8. Alice & Bob communicate, encrypting messages with the session key, K

Ex(P)

Bob Alice

\ © 2024 - ur. basit wuresni

17

© 2024 - Dr. Basit Qureshi

CS435 DistributelEaManl
.

INTEGRITY t+~Dr. Basit Qureshi
SRR SMTEEE MACM

S ,’g‘;",‘ﬁd -

-2
—

-

INTEGRITY

Use cryptographic techniques to detect that data has not
been modified

Integrity mechanisms can help to

* Detect data corruption
e Detect malicious data modification

* Prove ownership of data

© 2024 - Dr. Basit Qureshi

19

///////////// 4

74

w

W /?/;

Y
7

7,
o

INTEGRITY

How do we detect that a message has been tampered?

A hash is a small, fixed amount of information that lets us have confidence
that the data used to create the hash was not modified

Message M
* We associate a hash with a message

hash(M)
* We’re not encrypting the message

different

* We’re concerned with integrity, not confidentiality
* |f two messages hash to different values, we know the messages are

© 2024 - Dr. Basit Qureshi

20

%

7z

////////////////]

W

7/

INTEGRITY

* Hash functions are the basis of integrity
* Not encryption

* Can help us to detect:
* Masquerading: Insertion of message from a fraudulent source
* Content modification: Changing the content of a message
* Sequence modification: Inserting, deleting, or rearranging parts of a message
* Replay attacks: Replaying valid sessions

///////////// 74,

//////%//{///// 7

,//W/

INTEGRITY

* Some popular Hash functions
 MD5: 128 bits (Known weaknesses)
* SHA-1: 160-bits

e SHA-2: (Bitcoin uses SHA-256)

* SHA-3: 256 & 512 bit

* Blowfish: Used in OpenBSD

* 3DES: Used for Linux passwords

//////////////// 74,

7 o

74

7

V7

74
7 /////

/ ,//W

INTEGRITY

* Message Authentication Codes (MAC)
* We rely on hashes to assert the integrity of messages

* An attacker can create a new message M’ and a new hash and replace
H(M) with H(M’)

"Hello, Jib!" - "Hello, Jab!"

Hash=a8e02b1... — Hash=4d77eal..

* So, let’s create a checksum that relies on a key for validation:
Message Authentication Code (MAC) = hash(M, key)

* Hash of message and a symmetric key: An intruder will not be able to
replace the hash value. You need to have the key and the message to
recreate the hash

* MACs provide message integrity

© 2024 - Dr. Basit Qureshi

CS435 DistributelEaManl

f 4
»

4

AUTHENTICATION ns-Dr. Basit Qureshi
| PEA SMTEEE MACM

: o" s "g"‘,"“ >
. - e ’
—p S | : v . “ -2

-

w2

W

T

7 4

7/

N\

g

’ 4 i //

AUTHENTICATION

Three factors of authentication

1. Ownership Key, card

Something you have

Can be stolen

2. Knowledge Passwords, Can be guessed, shared,
Something you know PINs stolen

Requires hardware

3. Inherence Biometrics May be copied
Something you are (face, fingerprints) Not replaceable if lost or stolen

© 2024 - Dr. Basit Qureshi

25

i

AUTHENTICATION

* Multi-factor authentication
e Factors may be combined
 ATM machine: 2-factor authentication (2FA)

* ATM card something you have
* PIN something you know

e Password + code delivered via SMS: 2-factor authentication
* Password something you know

* Code something you have: your phone

* Two passwords # Two-factor authentication
* The factors must be different

© 2024 - Dr. Basit Qureshi

26

N\

AUTHENTICATION

e Password Authentication Protocol (PAP)
* Unencrypted, reusable passwords

* Insecure on an open network

e Furthermore, the password file must be protected from open access
e But administrators can still see everyone’s passwords

name:password

i

login, password database
- > Passwords
§\\\\ client OK server namel:passwdl
\g\\ < name2:passwd2
\\\ paul :monkey123

© 2024 - Dr. Basit Qureshi 27

LA
T

7 Lt

7

4/

W

7 ,/ﬂé%///

AUTHENTICATION
* Challenge-Handshake Authentication Protocol (CHAP)

* The challenge is a nonce (random bits)
 We create a hash of the nonce and the secret

 An intruder does not have the secret and cannot do this!

Random string = nonce
challengef

<
. hash(challenge, secret)
client » server
< OK
Has shared secret Has shared secret

© 2024 - Dr. Basit Qureshi

28

\§\

AUTHENTICATION
* Time-based One-time Password (TOTP) algorithm

Both sides share a secret key

 Sometimes sent via a QR code so user can scan it into the TOTP app

User runs TOTP function to generate a one-time password

0 Authenticator 7

one_time_password = hash(secret_key, time)
* User logs in with: Name, password, and one_time_password 6941 50
i

* Service generates the same password

one_time_password = hash(secret_key, time) 4 4 1 7 9 O

///////////////

L

7 /ﬂ/%//

////////////

LA

9/

439213

© 2024 - Dr. Basit Qureshi 29

