
Alien codes
Aliens have discovered that humans encode their messages as bit strings of 0s and 1s. They are eager to
communicate with humans and would like to find how to encode their alien language as bit strings of 0s
and 1s. They know that with a bit string of length N it is possible to have distinct bit strings. But the
limitation of their signal transmission equipment does not allow transmission of bit strings with three
consecutive 0s or two consecutive 1s. For example, it is not possible to transmit the following bit strings
of length 10: 0101000101, 0101110010 or 1000101101. So they need to compute how many distinct bit
strings there are, of a certain length N, with these constraints. How might you as a human solve this
problem?

Input Format

Each test case consists of a single line containing an integer N indicating the length of the bit string to
consider

Constraints

Output Format

A single integer being the number of bit strings of length N that do not have three consecutive 0s or two
consecutive 1s.

Sample Input 0

4

Sample Output 0

5

Explanation 0

Out of the 16 possible distinct bit strings of length 4, only 5 of them can be transmitted because they
have no three consecutive 0s and no two consecutive 1s. They are: 0010, 0100, 0101, 1001 and 1010

Sample Input 1

16

Sample Output 1

151

Array Combinations
Write a recursive Java program that reads from console a 2*n array where 2 is the number of rows and n
is the number of columns. Your program should output all combinations of each subarray in order. The
combinations should contain one element from every subarray.

Input Format

The first line represents the first subarray and the second line the second subarray. The elements of each
subarray is seperated by commas.

Constraints

NA

Output Format

The output displayed on the screen is the combinations of each subarray in order.

Example

Input:

5

2,4

Output:

5 2

5 4

Another Example:

Input:

10,20

1

Output:

10 1

20 1

The Coin Change
Problem

You have types of coins available in infinite quantities where the value of each coin is given in the array
. Can you determine the number of ways of making change for units using the

given types of coins? For example, if , and , we can make change for units in
three ways: , , and .

Given , , and , print the number of ways to make change for units using any number of coins
having the values given in .

Input Format

The first line contains two space-separated integers describing the respective values of and .
The second line contains space-separated integers describing the respective values of
(the list of distinct coins available in infinite amounts).

Constraints

Each is guaranteed to be distinct.

Hints

Solve overlapping subproblems using Dynamic Programming (DP):
You can solve this problem recursively but will not pass all the test cases without optimizing to
eliminate the overlapping subproblems. Think of a way to store and reference previously computed
solutions to avoid solving the same subproblem multiple times.

Consider the degenerate cases:
How many ways can you make change for cents?

How many ways can you make change for cents if you have no coins?

If you're having trouble defining your solutions store, then think about it in terms of the base case
.

The answer may be larger than a -bit integer.

Output Format

Print a long integer denoting the number of ways we can get a sum of from the given infinite supply of
 types of coins.

Sample Input 0

4 3
1 2 3

Sample Output 0

4

Explanation 0

http://en.wikipedia.org/wiki/Dynamic_programming
http://en.wikipedia.org/wiki/Overlapping_subproblem

There are four ways to make change for using coins with values given by :

1.

2.

3.

4.

Thus, we print as our answer.

Sample Input 1

10 4
2 5 3 6

Sample Output 1

5

Explanation 1

There are five ways to make change for units using coins with values given by :

1.

2.

3.

4.

5.

Thus, we print as our answer.

Crossword counter
A crossword is a word puzzle that takes the form of a square or a rectangular grid of white and black
shaded squares.

Given the layout of a crossword grid, you are asked to write a program to count the number of “across”
words and the number of “down” words, knowing that a word is a sequence of at least 2 adjacent white
squares that lie on the same horizontal or vertical line.

Input Format

Each test case consists of a single line containing two positive integers H and W indicating the height and
width of the grid, followed by H lines, each line consisting of W characters describing the grid, where ‘.’
denotes a white square and ‘x’ denotes a black square.

Constraints

Output Format

For each test case, output one line containing the number of across words and the number of down words
(separated by a single space) in the grid.

Sample Input 0

5 5
x....
x.x.x
.....
x.x.x
....x

Sample Output 0

3 2

Explanation 0

Grid of 5 lines and 5 columns
3 accross words
2 down words

Even	Sheep
On	a	farm	divided	into	a	grid	of	cells,	every	cell	either	has	grass	on	it	or	is	empty.

If	two	adjacent	cells	have	grass,	they	will	belong	to	a	common	field.	The	common	field	extends	in	all
directions	to	all	adjacent	cells	with	grass.	So,	if	cell	A	is	adjacent	to	cell	B	and	cell	B	is	adjacent	to	cell	C,	and
all	three	have	grass,	then	they	all	lie	in	the	same	field.	If	a	cell	with	grass	has	no	adjacent	cell	with	grass,
then	it	will	be	a	field	1-cell	field.

Every	field	must	feed	one	sheep	or	one	cow.	Each	field	of	grass	cannot	be	shared	between	cows	and	sheep.
If	each	field	can	have	one	sheep	or	one	cow	and	never	both,	how	many	possible	unique	arrangements	can
you	make	such	that,	there	are	even	number	of	sheep	in	the	grid	farm?

Input	Format

The	first	line	contains	R	(number	of	rows)	and	C	(number	of	columns),	separated	by	a	space.	Each	of	the
next	R	lines	contains	a	string	with	length	equal	to	C,	with	no	spaces.	The	string	has	the	character	Y	to
denote	a	cell	with	grass	and	N	to	denote	a	cell	with	no	grass.

Constraints

1	≤	R,	C	≤	5000

Output	Format

S,	an	integer	that	contains	the	number	of	arrangements	possible,	modulo	1,000,000,007.

Sample	Input

3	4
YNNY
NYNY
NYNN

Sample	Output

4

Explanation

There	are	three	fields,	as	follows:	
1	-	-	2
-	3	-	2
-	3	-	-

First	Solution	(zero	sheep)	
Cow
Cow
Cow

Second	Solution	(two	sheep)
Sheep
Cow
Sheep

Third	Solution	(two	sheep)
Sheep
Sheep
Cow

Fourth	Solution	(two	sheep)
Cow
Sheep
Sheep

So,	the	total	number	of	ways	is	4.

Flash disk storage
When using a USB flash disk as a storage device, it is beneficial to use as much space as possible, when
saving files. You are asked to write a program to determine the most efficient way to store files onto a
2GB-flash disk (2048 MB), by using as much space as possible.

Input Format

Each test case consists of a single line containing an integer N indicating the number of files available to
go onto the flash disk, followed by N lines, each line consisting of an integer S being the size in megabytes
(MB) of each of the files.

Constraints

Output Format

For each test case, output one line containing the sum (in MB) of the file sizes to be stored on the flash
disk resulting in the most amount of space used.

Sample Input 0

5
1800
900
180
225
600

Sample Output 0

2025

Golf tournament
The MENA Golf Tournament was held in Saudi Arabia on October 5, 2016. Tournament participants were
required to play 9 holes of golf and then submit their scores for each hole to the judges. The judges are
still trying to determine the winners. Your job is to assist them in determining the top five winners in the
golf tournament. The top five winners will be the participants who scored the lowest scores for the round
of 9 holes of golf.

Input Format

The first line of input file will contain a positive integer N representing the number of participants in the
tournament, followed by, for each participant, his full name on one line and, on the next line, his score S
for each of the 9 holes, separated by a single space.

Constraints

Output Format

The output file will consist of five lines, each line consisting of the name and total score, separated by a
single space, of the top five winners in the tournament.
Note: If two or more golfers have identical scores, list them in alphabetical order.

Sample Input 0

6
Rayan Thomas
1 2 3 4 5 6 7 8 9
Stephen Dodd
3 4 5 3 4 6 2 4 5
Joshua White
3 4 5 6 7 8 7 2 3
Zane Scotland
2 3 3 5 6 7 8 2 1
Matias Calderon
4 6 3 3 4 5 2 2 3
Abdulrahman AlMansur
5 6 4 6 6 7 8 3 4

Sample Output 0

Matias Calderon 32
Stephen Dodd 36
Zane Scotland 37
Joshua White 45
Rayan Thomas 45

Markov matrix
A square matrix of dimension N is called a positive Markov matrix if each element is positive and the sum
of the elements in each column is equal to 1. You are asked to write a program to check whether a matrix
is a positive Markov matrix or not.

Input Format

Each test case consists of a single line containing an integer N indicating the dimension of the square
matrix, followed by N lines, each line consisting of N decimal numbers being the values of each row of the
matrix.

Constraints

Output Format

For each test case, output Yes if the matrix is a Markov matrix, otherwise output No

Sample Input 0

3
0.150 0.875 0.375
0.550 0.005 0.225
0.300 0.120 0.400

Sample Output 0

Yes

Path crossover
Crossover is an operator used in genetic algorithms to change the programming of a chromosome from
one generation to another. In this problem, you are asked to apply the crossover operator to find a new
path out of two existing paths, in a path-planning algorithm.

A path, which represents a chromosome in genetic algorithms, is encoded as a list of cities.

For example, the following structure represents a possible path between cities: Riyadh->Jeddah-
>Madinah->Makkah->Taif->Abha

Let us assume that every city is represented by a number (or index). For example, if we assign these
numbers to cities:
Riyadh = 1
Jeddah = 2
Makkah = 3
Madinah = 4
Abha = 5
Taif = 6

In this case, the path shown above will become: 1->2->4->3->6->5->1

Now, path crossover consists in taking two distinct paths and generating a new path using crossover.

The new third tour is created as follows:
• We select a subpath with length N starting from position K in Path1.
• Create Path3 using subpath so that subpath is located at the same indices in Path1
• Complete Path3 with remaining cities from Path2, in the same order as they appear in Path2.

Input Format

The input consists of 5 lines.
• the first line contains the length of the path, including the start and destination, which are the same
city.
• the second line contains the position of the crossover
• the third line contains the length of the subpath
• the fourth line contains the first path
• the fifth line contains the second path

Constraints

Constraints on the path
To be valid, the path must satisfy the following constraints:
• The path starts and ends with the same city. In our example, the path starts and ends with 1.
• There is no city that repeats in the path, only the start is equal to the destination (first city and last city).
• The path must contain all the cities available (all numbers).
• The path must have at least 6 different cities.
• The position (index) of the first city is zero (0).

If any constraint above is violated, the program should return the string value error (case sensitive).

Output Format

The output will contain the path resulting from crossover

Sample Input 0

9

2
3
1 2 4 8 3 6 5 7 1
1 6 7 3 8 5 4 2 1

Sample Output 0

1 6 4 8 3 7 5 2 1

Explanation 0

To illustrate the process, consider the following example. We have two paths:
Path1: 1->2->4->8->3->6->5->7->1
Path2: 1->6->7->3->8->5->4->2->1

Now, we will make a crossover at position K=2 with length N=3 in Path1. So, the subpath is 4->8->3
because city 4 is at position 2 in Path 1 and the length of the subpath is 3 (cities 4 and 8 and 3).

Therefore, the third path will be initialized as follows:
Path3: 1->?->4->8->3->?->?->?->1

This path must be completed from Path2 in the same order of cities.

In Path2, the first element after the start city is 6. As city 6 does not belong to the subpath, we will add it
to Path3.
Path3: 1->6->4->8->3->?->?->?->1

The next value in Path2 is city 7 and is not in subpath, so we add city 7 to Path3.
Path3: 1->6->4->8->3->7->?->?->1

The next value in Path2 is city 3. However, city 3 already exists in subpath, so we skip it.

The next value in Path2 is city 8. However, city 8 already exists in subpath, so we skip it.

The next value in Path2 is city 5 and is not in subpath, so we add city 5 to Path3.
Path3: 1->6->4->8->3->7->5->?->1

The next value in Path2 is city 4. However, city 4 already exists in subpath, so we skip it.

The next value in Path2 is city 2 and it is not in subpath, so we add city 2 to Path3.
Path3: 1->6->4->8->3->7->5->2->1

This is Path3, the resulting path from crossover between Path1 and Path2.

Sample Input 1

10
2
5
3 4 8 9 2 6 5 7 1 3
3 8 7 5 9 1 2 5 4 3

Sample Output 1

error

Explanation 1

In Path2, 5 is repeated

Pattern Recognition
In image processing, is the process of classifying input data into objects or classes based on key features.

In this problem, you will develop a pattern recognition algorithm that identify how many classes exists for
a certain pattern in an image.

First, an image is considered as a 2D array of integer values, where each element in the matrix has a
value between 0 and 255. If any of the element is not in this bound, the program should terminate with
the integer -1. The objective is to find how many times a pattern repeats with a certain similarity index.
The similarity index is a value between 0.1 and 1 (inclusive), which represent the similarity between a
pattern and certain elements in the matrix. If any of the similarity index is not in the [0.1, 1], the program
should terminate with the integer -1.

Let is consider this example. Consider the following image with 7x7 size.

Note the size of the matrix can be any number N>0.

Now, consider the following pattern with 2x2 size that we look for

Note the size of the pattern can be any number P

So, in this case, if we consider a similarity index of 1, then, we have three classes of this pattern in this
image, which are:

A similarity index of 1 means that there must be 100% similarity between the patterns and the elements
of the classes.

Now, for the same image and the same pattern if the similarity index is 75%, in this case, we have then
four classes of this pattern in this image, which are

The fourth class is considered as a pattern matching because 3 cells out of 4 are the same as in the
pattern, so a similarity of ¾=0.75. So, for any similarity index greater than 0.75 up to 1 we will have in
this particular case three classes, and for a similarity index lower than 0.75 we will have at least four
classes.

If the similarity index was 0.5, we will also count as pattern matching the case where two elements (or
more) out of four in the pattern matches elements in the image. A pattern must be counted only once in
case of a similarity lower than 1.0.

Sample input:
7 7
1 54 8 0 0 3 255
22 3 41 102 145 24 78
3 24 78 58 96 74 52
5 122 145 32 3 41 78
4 11 21 54 24 78 12
3 41 54 54 98 45 14
24 78 251 240 93 201 155
1.0
2 2
3 41
24 78

Sample output:
3

Explanation: The input will contain the following lines. The first line will contain the size of the matrix,
where the first int is the number of lines, and the second in is the number of columns. The next lines will
contains the image matrix values. After the image elements are read, the next line contains the similarity
index. Then, the subsequent lime contains the size of the pattern. The next lines will then contains the
values of pattern elements.

The output will contain number of classes found for the specified similarity index.

Input Format

The input contains the following The first line will contain the size of the matrix, where the first integer is
the number of lines, and the second integer is the number of columns. The next lines will contains the
image matrix values. After the image elements are read, the following line contains the similarity index.
Then, the subsequent lime contains the size of the pattern (rows and columns). The next lines will then
contains the values of pattern elements.

7 7
1 54 8 0 0 3 255
22 3 41 102 145 24 78
3 24 78 58 96 74 52
5 122 145 32 3 41 78
4 11 21 54 24 78 12
3 41 54 54 98 45 14
24 78 251 240 93 201 155
0.74
2 2
3 41
24 78

In the above a 7x7 matrix is provided
1 54 8 0 0 3 255
22 3 41 102 145 24 78
3 24 78 58 96 74 52
5 122 145 32 3 41 78
4 11 21 54 24 78 12
3 41 54 54 98 45 14
24 78 251 240 93 201 155

The similarity index is 0.74

The pattern to match is a 2x2 matrix
3 41
24 78

Constraints

Number of rows and columns for the matrix and the pattern must be >0. Similarity index cannot be

smaller than 0.1 All matrix values must be >=0 and <=255

Output Format

The output will contain number of classes found for the specified similarity index. For the above example,
output is 4

For any unacceptable input or wrong solution and program outputs -1.

Sample Input 0

7 7
1 54 8 0 0 3 255
22 3 41 102 145 24 78
3 24 78 58 96 74 52
5 122 145 32 3 41 78
4 11 21 54 24 78 12
3 41 54 54 98 45 14
24 78 251 240 93 201 155
1.0
2 2
3 41
24 78

Sample Output 0

3

Sample Input 1

7 7
1 54 8 0 0 3 255
22 3 41 102 145 24 78
3 24 78 58 96 74 52
5 122 145 32 3 41 78
4 11 21 54 24 78 12
3 41 54 54 98 45 14
24 78 251 240 93 201 155
0.74
2 2
3 41
24 78

Sample Output 1

4

Permuted words
A word can be permuted by changing its letters positions. For example, [own, won, now] are all
generated by changing the letters positions. This has many applications especially in security. You are
asked to develop a program that collects permuted versions of a word. For any given word, your program
will check if there exist any of its permutations and if so it will display the number of available
permutations for it. If the word itself is a new permutation and it does not already exist, the program
would add the word to the stored set of permutations. Your program should be case insensitive
(uppercase and lowercase letters are considered the same).

Input Format

Each test case consists of a single line containing one positive integer N indicating the number of words to
process, followed by N words, each on a separate line

Constraints

Output Format

For each word in the test case, output one line containing the word as is, the number of already added
permutations and whether the word was added or not (Y or N), all separated by one space

Sample Input 0

6
now
won
CAT
WON
owN
ACT

Sample Output 0

now 0 Y
won 1 Y
CAT 0 Y
WON 2 N
owN 2 Y
ACT 1 Y

Semantic Mind-
Reader

In the race for the best Internet browser, there is now a new contender called the The Semantic Mind-
Reader. After its promo on the world wide web, everyone has been desperately waiting for the browser to
be released. Apart from the various security powers it possesses, it is called the mind-reader for a reason.
You do not need to type 'www.' to open a website anymore. Though, you still need to type '.com' to open
a website. The browser predicts all the vowels in the name of the website. Obviously, this means you can
type the name of a website faster and save some time. To convince the users that this browser will indeed
save them a lot of time to open a website, you are asked to write a marketing report.

Input Format

Each test case consists of a single line containing an integer N followed by N lines, each line consisting of
a a string of length L being a website address in lowercase letters.
Note: Every website address starts with www. and ends with .com

Constraints

Output Format

The ratio of the number of characters you would type in the new browser, to the number of characters you
would have typed in your normal browser.

Sample Input 0

2
www.google.com
www.hackerrank.com

Sample Output 0

7/14
11/18

Explanation 0

In the first test case, you would type ggl.com (7 characters only) whereas in a normal browser, you
would type www.google.com (14 characters)

Social Relationship
Analyzer

Bob has been using facebook for many years; he has a habit of friending anyone who requests to be a
friend. This is a dilemma, over the years, he has been in a relationship for over 5000 friends, many of
them he has never communicated over the months.

He is thinking of building a fast program to filter unwanted friends based on their trustfulness. You need
to help him build a fast program that would require minimum number of computations. Bob uses a
strange method of defining his social relationships using a 2x2 matrix composed of trust relationships. He
defines 3 states of relationships, trustful (represented by 1), so so (represented by 0) and not so trustful
(represented by -1) in the matrix. These matrices may not be necessarily be square matrices (i.e. rows
and columns can be of different sizes).

Since he has over 5000 friends, he cannot afford to have a very large matrix containing trust parameters.
To determine an optimal solution, he has decided to build many small 2x2 matrices by asking his friends
to provide trust information about their friends in the same manner. Luckily his friends always provide
their matrices in a particular order:

A1(a x b), A2(b x c), A3(c x d) …. Where (a x b) represent dimensions of matrices (a rows and b columns)
sent by Bob’s friends A1, A2 and A3… An.

Bobs algorithm computes trust scores but multiplying all of these matrices. Unfortunately multiplying all
matrices take a long time and Bob is tired of waiting. He wants you to help him optimize his matrix
multiplication problem by selecting an optimal order of trust matrix multiplication. He wants to make sure
that any solution you provide will give the minimum number of multiplications (cost).

The cost of multiplying two matrices with dimensions 3x4 and 4x5 = 3 * 4 * 5 = 60. In multiplication of
more than 2 matrices, the order of multiplication matters in determining the optimal minimum cost.

Input Format

The first line consists of a positive integer n > 0 representing number of matrices. In n subsequent lines,
each line consists of dimensions of each matrix, number of rows followed by number of columns. All
values for rows and columns must be >0.

5
4 10
10 3
3 12
12 20
20 7

Constraints

All values for rows and columns must be >0.

Output Format

Integer value >0 giving minimum number of computations in the optimal solution. The program writes -1
to console if any error occurs, i.e. if any number of rows or columns <=0 or the matrices cannot be
multiplied.

Sample Input 0

5
4 10
10 3
3 12
12 20
20 7

Sample Output 0

1344

Explanation 0

The first row indicates number of matrices to be read from subsequent lines Each line contains a matrix
with number of rows and columns

Verification
The current cloud technology is based on distributed networks which consist of supercomputers
assembled in closely connected networks. Data can be shared and processed on a larger network and for
cheaper, by letting individual computers contribute over a bigger network through cloud platform. Since
individual clusters or nodes are someone else's computer that run untrusted code, the results are also not
trusted, so some verification needs to take place to check that the work performed is legal and complies
with the policies.

Input Format

Each test case consists of an integer indicating the number S of sets, followed by, for each set, an odd
integer N indicating the number of workers followed by N integers indicating the results R for the same
piece of work from each of the N workers

Constraints

Output Format

Will consist of S lines, each line indicating the verification about the performed work for each set. If the
majority of the results agree (that is, they are the same), then the work is Verified. If there is no major
consensus, but one result has more matches than any other result, then it is Unverified, otherwise the
result is Unknown.
Note: a single result is always Verified.

Sample Input 0

3
3
80
22
80
5
10
15
10
25
30
3
50
52
51

Sample Output 0

Verified
Unverified
Unknown

	Alien codes
	Array Combinations
	The Coin Change Problem
	Crossword counter
	Flash disk storage
	Golf tournament
	Markov matrix
	Path crossover
	Pattern Recognition
	Permuted words
	Semantic Mind-Reader
	Social Relationship Analyzer
	Verification

