
IEEE Extreme 9 – October 24, 2015.

Contents
Digit Fun! ... 2

Prediction Games ... 4

Block Art .. 10

Xtreme Driving .. 14

Xtreme In Security .. 18

Taco Stand .. 24

Bon Voyage (or Muddle over Cruise Cabins) ... 26

Palindromic Moments .. 30

Mr. Pippo's Pizza ... 36

Zoom In ... 38

High Score ... 41

Threesome Poker .. 43

Snakes & Bunnies .. 47

IEEE State of Mind ... 53

Car Spark .. 58

Dictionary Strings ... 60

Light Gremlins ... 64

Chocolate 2 ... 67

SAD: Long Way from Home ... 70

Shortening in the Real World ... 76

Communities .. 80

Pattern 3 .. 83

Land ... 85

Alice and Bob Play Sheldon's Favorite Game .. 89

Eat, Sleep, Drink, Code.. 93

That's So Characteristically Euler! ... 97

Finite Domain Constraints ... 100

Blocks Game... 104

Would Be... Could Be... BST! ... 110

Digit Fun!
Problem Statement

Recurrence relations are an important tool for the computer

scientist. Many algorithms, particularly those that use divide and

conquer, have time complexities best modeled by recurrence

relations. A recurrence relation allows us to recursively define a

sequence of values by defining the nth value in terms of certain of its

predecessors.

Many natural functions, such as factorials and the Fibonacci

sequence, can easily be expressed as recurrences. The function of

interest for this problem is described below.

Let |An| denote the number of digits in the decimal representation

of An. Given any numberA0, we define a sequence using the following

recurrence:

Ai = |Ai-1| for i > 0

The goal of this problem is to determine the smallest positive i such

that Ai = Ai-1.

Input Format

Input consists of multiple lines, each terminated by an end-of-line

character. Each line (except the last) contains a value for A0, where

each value is non-negative and no more than a million digits. The

last line of input contains the word END.

Output Format

For each value of A0 given in the input, the program should output

one line containing the smallest positive i such that Ai = Ai-1.

Sample Input

9999

0

1

9999999999

END

Sample Output

3

2

1

4

Explanation

The first input value is A0 = 9999, resulting in A1 = |9999| = 4.

Because 4 does not equal 9999, we find A2 = |A1| = |4| = 1. Since 1

is not equal to 4, we find A3 = |A2| = |1| = 1. A3 is equal to A2,

making 3 the smallest positive i such that Ai = Ai-1.

The second input value is A0 = 0, resulting in A1 = |0| = 1. Because

0 does not equal 1, we findA2 = |A1| = |1| = 1. A2 is equal to A1,

making 2 the smallest positive i such that Ai = Ai-1.

The third input value is A0 = 1, resulting in A1 = |1| = 1. A1 is equal

to A0, making 1 the smallest positive i such that Ai = Ai-1.

The last input value is A0 = 9999999999, resulting in A1 =

|9999999999| = 10. Because 10 does not equal 9999999999, we

find A2 = |A1| = |10| = 2. Since 2 is not equal to 10, we find A3= |A2|

= |2| = 1. Since 1 is not equal to 2, we find A4 = |A3| = |1| = 1. A4 is

equal to A3, making 4 the smallest positive i such that Ai = Ai-1.

Prediction Games
Problem Statement

In a Prediction Game, two or more players attempt to predict the score

of a series of upcoming sporting competitions. Each player's

predictions are then evaluated based on the sum of the categories

listed below. These descriptions use the following variables:

 S1: Actual score earned by team 1.

 S2: Actual score earned by team 2.

 P1: A player's predicted score for team 1.

 P2: A player's predicted score for team 2.

Point System

 Winner: 10 points if they correctly picked the winner, i.e. the

team with more points at the end of the competition.

 Team 1 Score: Maximum(0, 5 - |S1 - P1|). In other words, if they

pick the correct score for Team 1, they earn 5 points. If they

were off by one in their prediction, they earn 4 points. If they

are off by two, they earn 3 points, and so on. If they are off by

5 or more points, they earn 0 points in this category.

 Team 2 Score: Maximum(0, 5 - |S2 - P2|).

 Point Spread: Maximum(0, 5 - |(P1 - P2) - (S1 - S2)|). In other

words, if the player predicts the correct number of points by

which one team beats another, they earn 5 points. If they are

off by one, they are 4 points, and so on. If they are off by 5 or

more points, they earn 0 points in this category.

Some, but perhaps not all, of the competition scores have been

received. Your task is to provide a list of players who might end up

with the highest point total when all scores are recorded.

Notes:

 Whenever we refer to a "game," we are referring to the

"Prediction Game." When we refer to a competition, we mean

the sporting event that teams are playing.

 No competition will end in a tie. In addition, the players are not

allowed to predict a tie score as a final result for a competition.

 The smallest score possible in a competition is 0 points. The

maximum possible score in a competition is 200 points.

 A player can earn points in the Team 1 Score, Team 2 Score,

and Point Spread categories, even if they do not correctly pick the

winner. For example, if a player predicts a score of 24-17 (i.e.

24 points for team 1 and 17 points for team 2) and the final

result is 23-30, the player would earn 4 points for the Team 1

Score category (since the difference between the prediction (24)

and the true score (23) is only one, he would get 5-1=4

points). He would receive no points for the Team 2 Score category

or for the Point Spread since they are both off by more than 5

points. Similarly, if a player predicted a score of 10-9 and the

actual score was 9-10, the player would earn a total of 11

points as follows: 4 points forTeam 1 Score (again 5-1=4 points

since the difference between the predicted and the actual score

is 1), 4 points for Team 2 Score (for the same reason as with

scoring analysis for Team 1), and 3 points for the Point

Spread (since according to the formula the point spread is |(P1 -

P2) - (S1 - S2)| = |(9-10) - (10-9)|=|-1-1|=|-2|=2, and thus

the score obtained for this prediction should equal 5 - Spread = 5

- 2 = 3 points).

Input Format

The first line of input contains an integer t, 1 <= t <= 20, indicating

how many test cases are in the input.

Each test case follows in the following format. First comes a line

with two space separated integers, p and c, where p indicates how

many players there are, and c indicates how many competitions are

being played.

The following is repeated for each of the p players. The first line

contains the player's name. Then follows c lines with two space

separated integers. These are the predictions for this player. The

first of these prediction lines contains P1 and P2 for the first

competition. The second contains the predicted scores for the

second competition, and so on.

Finally there are c lines indicating the (possibly) partial results for

the competition. The first competition's result is reported on the first

of these lines, the second competition's on the second of these

lines, and so on. Each of these lines will contain two space

separated values. If the score for the team is known, the values will

be integers giving the score. If the result of the competition has not

yet reported, the line will read ? ?.

Notes:

 Each player's name is unique. All of the names are comprised of

an initial uppercase letter, followed by up to 30 lowercase

letters.

 2 <= p <= 20

 1 <= c <= 1000

 Either both scores will be given or neither will be given. You will

never be given a competition result where only one of the

scores has not yet been reported.

Output Format

For each of the test cases, you should output a line containing, in

alphabetical order, a space-separated list of the players who could

earn the maximum number of points. If there is only one winner

possible, then only the winner's name should be reported on a line

of its own.

Sample Input

3

2 3

Alice

14 17

20 7

30 7

Bob

20 7

21 17

14 13

14 17

17 13

? ?

2 3

Dave

14 17

20 17

30 7

Chuck

20 10

27 17

30 7

? ?

27 17

30 7

3 1

Francis

14 7

Eve

10 21

George

7 30

0 1

Sample Output

Alice

Chuck Dave

Eve George

Explanation

There are three test cases.

Test Case 1

In the first competition, Alice predicted a score of 14-17, which was

also the actual score. She earned 25 points for this prediction (10

points for the winner and 5 points in each of the other categories).

In the second competition, Alice predicted a score of 20-7, and the

actual score was 17-13. She earned 12 points for this prediction, 10

points for the correct winner and 2 points for the score prediction

for team 1 [5 - |20 - 17| = 2].

In the first competition, Bob predicted a score of 20-7, and the

actual score was 14-17. He earned 0 points for this competition,

because he was wrong about the winner, and he was off by more

than 5 on both team scores and on the point spread.

In the second competition, Bob predicted a score of 21-17, and the

actual score was 17-13. He earns 17 points for this prediction (10

points for picking the winner, 1 point for team 1 score, 1 point for

team 2 score, and 5 points for correctly predicting the spread).

With these known results, Alice is leading Bob, 37 points to 17

points. Since both Alice and Bob picked the same winner for the

third competition, there is no way for Bob to catch up. Therefore

you would output just "Alice" for this test case.

Test Case 2

In this test case, Dave currently has 40 points: 15 points from the

second competition (10 points for picking the winner and 5 points

for picking team 2's score), and 25 points for picking the correct

score for the third competition. Chuck has 50 points for picking the

correct scores in the second and third competitions.

Suppose the result of the first competition was 10-17. Then, Dave

would end with 57 points and Chuck would end with 50 points.

On the other hand, suppose the result was 30-0. Then Chuck would

end with 60 points and Dave would end with 40.

Therefore, since either Chuck or Dave could end with the highest

number of points in the game, you would output "Chuck Dave"

(since "Chuck" comes before "Dave" in alphabetical order).

Test Case 3

Here all of the results are in, and Eve and George have the high

score of 10 points each.

Inspirational Quote

Here's a quote to reward you for reading the entire problem, and

inspire you to solve it!

"It's tough to make predictions, especially about the future." - Yogi

Berra

Block Art
Problem Statement

The NeoCubist artistic movement has a very distinctive approach to

art. It starts with a rectangle which is divided into a number of

squares. Then multiple rounds of layering and scraping occur. In a

layering round, a rectangular region of this canvas is selected and a

layer of cubes, 1 cube deep, is added to the region. In a scraping

round, a rectangular region of the canvas is selected, and a layer of

cubes, again 1 cube deep, is removed.

The famous artist I.M. Blockhead seeks your help during the

creation of this artwork. As he is creating his art, he is curious to

know how many blocks are in different regions of the canvas.

Your task is to write a program that tracks the creation of a work of

Pseudo-Cubist art, and answers I.M.’s periodic queries about the

number of blocks that are on the canvas. Consider, for example, the

following artwork created on a canvas with 5 rows and 15 columns

or squares. The canvas starts without any blocks, like in the figure

below. We label cells in the canvas based on the tuple

(row,column), with the upper left corner being designated (1,1).

The numbers in each cell represent the height of the blocks in that

cell.

After adding a layer in blocks to the rectangle with upper left corner

at (2,3) and a lower right corner of (4, 10), the canvas now looks

like the following:

After adding a layer of blocks in the rectangle with upper left corner

at (3,8) and a lower right corner of (5, 15), the canvas now looks

like the following:

If Blockhead were to ask how many blocks are currently in the

artwork in the rectangle with upper left corner (1,1) and lower right

corner (5,15), you would tell him 48.

Now, if we remove a layer of blocks from the rectangle with upper

left corner at (3,6) and a lower right corner of (4, 12), the canvas

now looks like the following:

If Blockhead were to ask how many blocks are now in the artwork in

the rectangle with upper left corner (3,5) and lower right corner

(4,13), you would tell him 10.

“Beautiful!” exclaims Blockhead.

Input Format

The first line in each test case are two integers r and c, 1 <= r <=

12, 1 <= c <= 106, where r is the number of rows and c is the

number of columns in the canvas.

The next line of input contains an integer n, 1 <= n <= 104.

The following n lines of input contain operations and queries done on

the initially empty canvas. The operations will be in the following

format:

[operation] [top left row] [top left column] [bottom right row]

[bottom right column]

[operation] is a character, either “a” when a layer of blocks is being

added, “r” when a layer of blocks is being removed, and “q” when

Blockhead is asking you for the number of blocks in a region.

The remaining values on the line correspond to the top left and

bottom right corners of the rectangle.

Note: You will never be asked to remove a block from a cell that has

no blocks in it.

Output Format

For each “q” operation in the input, you should output, on a line by

itself, the number of blocks in the region of interest.

Sample Input

5 15

5

a 2 3 4 10

a 3 8 5 15

q 1 1 5 15

r 3 6 4 12

q 3 5 4 13

Sample Output

48

10

Explanation

This test case corresponds to the description given above.

Xtreme Driving
Problem Statement

Alice, one of the IEEEXtreme participants, is on her way to her

university to take part in this year's contest. To get to the university

she has to drive on a four lane highway, but as the highway is very

long she quickly becomes bored. She decides to practice for the

contest by thinking about some problems related to the highway

she's driving on. She comes up with the following problem:

Let's say that, in a single unit of time, her car, which is of unit-

length, can perform one of the following three actions:

 Drive one unit forward, staying in the same lane

 If the car is not on the left-most lane, drive one unit forward

and switch to the lane on the left

 If the car is not on the right-most lane, drive one unit forward

and switch to the lane on the right

If the highway is K units in length, in how many ways is it possible

to drive through the highway, provided that she starts on the first

unit of the highway at the left-most lane, and ends at the last unit

of the highway, also at the left-most lane?

As she's been training very hard for the contest, it doesn't take her

long to come up with a solution to this problem. But all of a sudden,

out of nowhere, a large cow appears in front of her car, and she just

barely manages to avoid crashing into it. She got a bit too

distracted thinking about the problem... But this incident gives her

an idea: what if the highway had a set of stationary cows that the

car must avoid crashing into?

Unfortunately she doesn't have time to think about this version of

the problem as she just arrived at the university and the contest is

about to start. When the contest starts, she is very surprised to see

that the problem she was thinking about is just like one of the

problems presented in the contest. What a coincidence! Again her

hard practice pays off and she quickly solves the problem. But the

real question is, can you?

Input Format

Input begins with two integers, K, the length of the highway, and N,

the number of cows standing on the highway, subject to the

following constraints:

2 <= K <= 1018

0 <= N <= 100

N <= 4(K - 2)

Then follow N lines. The ith line contains two integers describing the

location of the ith cow, xi, the lane on which the cow is standing (1

being the left-most, and 4 being the right-most), andyi, the unit on

which the cow is standing, subject to the following constraints:

1 <= xi <= 4

1 < yi < K

Notice that no cows are on the first or last unit of the highway. It is

also guaranteed that no two cows share the same position.

Output Format

You are to output the number of ways to drive from the left-most

lane at the first unit of the highway to the left-most lane at

the Kth unit of the highway subject to the rules described above, and

the additional constraint that the car must not drive to a position

occupied by a cow.

As the number of ways can be quite large, please output the answer

modulo 109 + 7. Note that this is the same as the remainder when

dividing the number of ways by 109 + 7.

Sample Input

5 2

1 2

2 3

Sample Output

3

Explanation

In this example there are three ways to drive through the highway,

and they are shown in the following figures. Notice that the car can

drive in between cows (as long as other driving rules are fulfilled),

but it must not drive to a unit occupied by a cow.

Note: Two more sample test cases are available if you click on the

"Run" button.

Xtreme In Security
Problem Statement

This Challenge is sponsored by the IEEE Electron Devices Society.

The Xtreme In Security Corp. has devised a password-based

authentication system for their new operating system. They have

made some unfortunate design decisions that make their system

vulnerable to attack.

The system stores in a file a salted and peppered password hash. All of

the passwords use the same salt "IEEE" and the same pepper

"Xtreme". When the user is enrolled, they supply a password p. The

system checks to make sure that p is less than 20 characters long,

and that it contains only lowercase letters and numbers. Then the

salt is prepended to the password and the pepper value is

appended. The resulting value, using UTF-8 encoding, is then put

through the SHA-256 hash algorithm, and then base64 encoded. This

base64 encoded value is stored in a password file, along with the

user's name.

Note: Even though the password contains only lowercase letters and

numbers, the salt and the pepper contain some uppercase letters.

The SHA-256 hash algorithm is case sensitive.

When the user is authenticated, a similar process occurs. The user

is prompted for a username and a password. Then the salt is

prepended to the supplied password and the pepper is appended.

The resulting value is hashed with SHA-256, and base64 encoded. If

the resulting value matches what is stored in the password file for

the specified user, then the authentication is successful.

Your task is to break as many of the hashed passwords as possible

to try to convince the system designers to improve their approach.

Here is some inspiration from XKCD:

https://en.wikipedia.org/wiki/Salt_%28cryptography%29
https://en.wikipedia.org/wiki/Pepper_%28cryptography%29
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/Base64

Credits: XKCD

Input Format

The input will consist of a single salted, peppered password hash.

This hash will be derived from a single password.

The hash will be chosen from the following set of values:

/PtjJboZGlsmTovvyOhBOoTVnQKUP/gJXxjLAW9Lppw=

05HwH93tksb69U1ifesCQuYFP+gKPVH2L6W8JeBdXy0=

https://xkcd.com/936/

0BkyqI3NHyjh0m20wNt6txW08dglSMP4/qzUEezq4Aw=

1mT5cdKRz4BbfMdc8LAdnxfjsGO4lV0k0/V1IHtidmY=

28AdfW0JHmCP4TbieGON8dafRaFpUgpzuX2bHZN6WsM=

3hoie8omUyvM/9Qfx9dKfoptlwemYe2os8aohTGzoyw=

3uDaglIdYUn11AadEhELBjE15A0L6hAaWnZmjCGtt+M=

4D4NstIYSjVN826Q+SXUDDmXglJplpYWiJYf9rt7H8U=

7FCsEXCDTAxyLh3EPnNx7YrJ44SzehQYv3GmPSA6pWk=

81X3NN5JgTuGgqq3ErF0eL/l/wZFYkCwur6fZ06L2Us=

8FzGA/nS7XizLrAVOr/FoeKSq4gaoQRq+kpBKNXHIzc=

8OtpJ+E1XHv2RDsKIEwJc9KUFwPRzaqeHJ735Er6AVE=

8cdgZu9dBOrcTBMqElM+y9Vh5FTBRQ7n9EGa/4qVHUk=

8esDbw8ZVmUuUMEy2Scf5qGiZYiykevrvKpq2bVYHj4=

9DS4orbhPFbjJcosEqQg+eg0Si5qSOnftfHiqK8sYug=

9XDFIu4RPH0EL5XR+5VYILJ3UFAyltpfjONJKp/vcLk=

B2E/K/DywbLEKutOKpS8HxHFrZwucwac4KjzYgsXg3g=

BJQeqlV+4ejv0je5GpekzGdHHWHL5nnrbtD/170LZCA=

BjQiH/A2FUNHlUwhBi8NWmj3HmhmAh6Ag0kRyVSaVo8=

BwbAsOqPsxteVCpAwIjrhYogsUS1bF/bLns2QdcLYUI=

CYDZabjeyTAwcEDEcvrX83514UmpjzvQUQ68DIZ/PXg=

CornANxoZ5FJnlhwHmK42CDXf3h6jFr3g73YIRuoymQ=

DDa2TJX20pPsNftfyJ3s6LBwSMSR3EADZGDxW2wThbs=

FFXy3vru2D8rTWZRlh9lSMvtEusfWgO17OmJCTQTECs=

FGkqFC/jLDqDZ10fql1nGw7AQNWioOrZ3ydEaJyXBwo=

Fz+Y0H/R2rMZlc1C88Yx0A0xluYnVTinlw5qaSx8vWQ=

GcJMWMDF6+f+onf6oi1FbpnN7dVrFEZnlXtHqmaygs4=

GsXTQM0w+Clb1c9B7n28mADU2quLeI1n91KTyBboeHI=

HLnuqQmCYetzrau3frCDEpZ52QCIby108gugsmwAwQ0=

HWv9gx+GL/6g+0b0eOc+1Z/8BHse91/5T/DdiDwEknU=

IDB/pOthrWobzapJ/N8HsraNhwfbExAa2uusdiKHFFI=

IXYqlHbVeONERbxFe8SaEPEEKex45EihiC/l8CR52kk=

Idvs4Al9YZsqPG8xkSxVqb6MOVhbw5k+qtF8UZKYVE8=

IxQxcFXR51q8h8FLblPhYfUR30lIAt6hX8TjZWVa/GE=

JCmqBN0MsW13tEmsQPYWg9Fj25MUrqFYvSK2arxTt0A=

JOXxLH/i8i+fxDIWP2cts5Si/5En1A8M3s/vy6Aadic=

KudA8vCEQdGaaCSxotpAcluXnVPS3MAZPkwI/lVupak=

LGZEfbUr/tMREpJtsao/uuewcJXApmgfHDbh1zzfdhU=

LZIzmWEqXDPJsnKttFGRaG/jUhHrbTEKt1XCO6XbdME=

Lq0kV5M0HDSgB4m5KZbbn6BYRNlkKfaaAr3/11ueopY=

Lqxt1UjT1ecV6ucgYn+yrGSUTxPWkZgdDtbygGwC/BA=

MHQTB1MSsvhBxMpdRUiaM9Uj1QxU7zYq3FqDlW2HT2s=

MKewBZryb2l36Y0tDyx+WuVeXUGfiSzcJplm9y1w9m0=

N5aunKGHeN2WETLXLzfhfCxAfkwtGU/imziiTF3t7oY=

NmrOUzHxKSfNT8UJ1YXbRL8I+HCAb+glJ0bBXcHfagE=

NnSS+AuW1Z6zytSfqaiIVp4xxHHe70Av+IdhDlkoItQ=

O9L1ZWYwuzgaImTjOwuogXfpC+C44zzcDhpt08LjR5c=

R/ye+L9W+l6hyZ/v1POsWYboEGemIisARL8ohUvfBLI=

R1v9fEb9VrZuU5xiYTKTqhHF03VtXg7+KtfFHPkQuCQ=

RVfhsLovxa+/6tWgeSBASIIkzXkVtDPT4yYvjboHhIk=

Rz38Ng2qI3mPkaRB6uDoCYmmfzbVTCzpt2sG1o+TZqo=

S98FBzlv2vMVP/q+23m1wrHMJIrcy1rhoQGy338c4Bs=

SzraQWWasG5ZO1tJq16DqU/7M/o/WRiAWRl1aFFvwr8=

TInfNYwXvofBA+9QIe3+XEfDpO5ER+R+Jn3BOshhZWU=

VDkcRd54BhYlK5Wg2PPDa/jzGrSkMepGIv6Tw3I2ksc=

VjFTqTEY27V8lK2yCvhLhYm2Brh9bN1vWckVaevsiiY=

Wau4ReopjFKk8SYYNq5lIBL+Rgg8aBR6h9UgTIv2u7I=

XtEWsXf16y6Bc7vQxDy7hwRdBVWo3dV9C6CDVSf4PLs=

Y5b6UztMueFYIFMl4a61jlD/ZhFG74/rVn8XaqqU+8c=

YollqBlewcxE/kF6PKvv0r1CLZkKx82657bB0eQbiK0=

YzSqlQTtq5j+Kd+hW1ISgBW0mn61vsQsxNeipq0sYCo=

aJIH+q0YjYZCpierKtbue5JDtZSF8tKxVKuHYUPQ65k=

bi6rh2HgTbJxR2GOTNWZLlxiiWZVnObptGj0KqOCSYo=

cX7VyMvSYhuRvEfAUb3uNh8kmjpNFg0tatUPN562iOg=

eSCTiCrzHPbngPu3F4ivPkLUv7MqLUlmWAhA4UO975Y=

eUqkcVCbgIx1bGhhmnN5MxJFJhVruINmG65TjT/EQ1k=

gE7PseB3mspPtYG3JROzT9FeqTfPFYQvBF2SJD9V19Y=

gMi4hC4o7Fmv6yIrU48BVy8I1khXwkaD36G7bWiZHeo=

h84yifAWGLj9sakEqxZ3QEjkXL42AoScP3L5Tdevm98=

hEGKCiTZSA5x560hodRoIBBTE8pv4sP1VXG4D0fXWcI=

ix+0IJIpLpHeSHEII+Q/IVY+FlRXn3xMA0ey6UITi34=

j2GTUqtqZpotY8wF16zkvnbdCLTnX3oOZ30SjQUnIUk=

jtUg00EsmzzFkk8JgKg3OpkmPRpN9xbwsdNXQSPczwo=

k1J9Dv3EI442CO6A2FGN1H8JgFO2kjNBvkjDR0WIvkA=

kuRpkIh9kaNz6XvG8U6GO/IARH/SqhRnTiJbZHXC0yQ=

lFgqRrqTz1WXmO22u+Is1ZmWWUtuYrTJigsSB7I9NHI=

lUfxHX9xH2aOHheMMqQF+f5BNh97avew2uOwEN3B7HE=

m0IeuugWDOl9cFUFRYJhouCBT39T0dpp1xBOKPqHP94=

mgA5kgALstQpGUBp4vZ8oiz0P4jjAGl0wjgls6kQyMA=

nMAwaDYvEIAwoqtqWMpBAWdhuRgRq/fmwWbRM7cOMIU=

opBtoC66YDRbLNqZAAu2FIeKfF0HMOGHCOCPYeNHdx4=

ot/igM+me4e3UTT731qcBkSAcToyADMCddr7i7LCWGo=

qrkd/8imuRtiDb9N1w2hQRxJAkdx3Wqh1HVXPS7dym8=

r6BN0tdyAYZD0Nmc7bfV0WRcFBb1A2WIPPKHVRG59k8=

rdALvOYVhA3hnUTBlaQXigWBSgMYzGTreSKyMoAoKfw=

rjwtKqkPc7cfQ+zZ+E9c+fzQYhRvhVtaKEFb+srIHcQ=

rwvmTDiJxIEETbsngvpxYGwZZK+FGo7527odGuQUjtQ=

socJeO02bT2w+XZUrLoopbZvQ1lRhDfE88GVrJQ8p+g=

tDdmKQpMiVDFA1YdblkHSFzL4Z9UIQ9FSouf3TybOu0=

tojYiNtlWmq+7r1dSvxDk3W5at/NMAi1uxCHY61WAKk=

tqpGCBzhR+0ONFk1sBiHPhz+kRiXmY3CGdUXqnMJwLg=

uAZthS7b4ySZtWpM9pJ7ulYnhFdpFABpR2iPRQEmff0=

uCG9dSBejCOrZWsX7+u8G340p74s8lDS/El8MIeOyMo=

ugcIIpDID0R1uFqBAcN3PNXhwlhen77GdAccFgpbs+A=

usg8BTtSfewL5M3OVg91TJCTc5vONLqgUCC/Si1Grsg=

vs2sCU8qG0pDYQfcjlPzDzvcbJnhP1OgFRcXP4i3ffw=

wEtqAs8JHjicWnXshAWF5Sg6NoswuG9qeJ7USw7YD7c=

y+zbMpySKY+WF97KkgRQ+tBpM7iTqTj9guWmGJcqfyA=

y1R6JQiUzUovgtdrvCkbeQAyMhFoupzhI5ZuQVPfCgw=

zqKPAOt5ziHSeRxc0TgUZF3rJxzBHAKdJeccvt3F7Jg=

Output Format

The output should consist of a single alphanumeric string, which

hashes to the corresponding value given in the input.

Note: You may not be able to break all of the hashed passwords. If

you are given a hash that you cannot break, you may output an

arbitrary string. You will earn partial credit for this problem for each

password that you do crack!

Sample Input

tDdmKQpMiVDFA1YdblkHSFzL4Z9UIQ9FSouf3TybOu0=

Sample Output

password1

Explanation

For all passwords, the salt value is "IEEE" and the pepper is

"Xtreme". First, we can take the SHA-256 hash of the UTF-8

encoded string IEEEpassword1Xtreme. If we then base64 encode the

result, the value equals the desired

value:tDdmKQpMiVDFA1YdblkHSFzL4Z9UIQ9FSouf3TybOu0=.

Taco Stand
Problem Statement

Joe has been hired to make tacos at a series of baseball games. He

wants to calculate the maximum number of tacos he can make

based on the available ingredients. He always insists on fresh

ingredients, so any leftover ingredients on a given day will be

thrown away.

His ingredients are:

 Taco shells - every taco gets exactly one of these

 Meat

 Rice

 Beans

His recipe is to take one taco shell, then add exactly two of the

ingredients: meat, rice, and beans. So, for example, one taco might

have meat and rice, while another taco might be made with rice and

beans. However, a taco cannot have two of the same ingredient. For

example, Joe will never make a taco with two servings of meat.

Your task is to write a program to calculate the maximum number

of tacos Joe can make each day, given the amount of ingredients he

will have.

Input Format

The first line of input is an integer n, 1 <= n <= 1000, specifying

how many days Joe will be making tacos.

The following n lines contain 4 space-separated integers in the

format:

s m r b

where s is the number of shells available, m is the amount of

meat, r is the amount of rice, andb is the amount of beans, each

expressed in terms of the number of tacos they could make.

Note: s, m, r, and b are all non-negative integers less than 109.

Output Format

The output file is exactly n lines long, each line containing an integer

specifying the maximum number of tacos Joe can make with that

day’s ingredients.

Note: There is a newline character at the end of the last line of the

output.

Sample Input

2

5 3 4 1

1 9 9 9

Sample Output

4

1

Explanation

On the first day, Joe can make a total of 4 tacos - 3 meat and rice

tacos and 1 rice and bean taco.

On the second day, Joe only has one shell, so he can make 1 taco

with any two of the ingredients.

Bon Voyage (or Muddle over
Cruise Cabins)
Problem Statement

The TransContinental Ocean-liner Company is celebrating their

centennial anniversary. As a part of the celebrations, they launched

an exciting contest for a free, around-the-world cruise on one of

their ships. As part of the contest entry, passengers select two

cabins in which they would like to stay. If they are a winner, they

will be given one of the two cabins.

Interest was enormous, and great many people applied to be a part

of the voyage. Winners will be decided on a lottery. The company

does not have any control over whom all will win the final lottery or

obtain the tickets, but only on how many tickets will be distributed.

Jerry, the tour manager, is finding it difficult to find the maximum

number of prizes that can be awarded. He must make sure that

each potential winner can be accommodated in one of the cabins

that they specified when they entered the contest.

Your job is to find the maximum number of prizes that can be

awarded subject to this constraint. Help Jerry to find a solution for

his problem and earn some real good points for yourselves!

Input Format

The input begins with an integer T, 1 <= T <= 15, indicated the

number of test cases.

Each test case consists of the following:

 A line containing an integer N, 2 <= N <= 200, where N is the

total number of rooms on the ship.

 A line containing an integer M, 0 <= M <= 500, where M are

the number of people who signed up.

 Next come M lines, the ith line containing the pair of cabins

selected by the ith entrant in the contest. The cabin choices will

be two space-separated integers, each falling between 1

and N (inclusive).

Output Format

For each test case, you should output, on a line by itself, the

maximum number of tickets that can be awarded such that every

winner can be housed in one of the two cabins that they have

selected.

Sample Input

5

6

4

1 2

1 2

3 4

5 6

6

5

1 2

1 2

1 2

3 4

5 6

4

5

1 2

1 3

1 2

2 3

3 4

5

11

1 2

2 3

3 4

4 5

1 5

2 4

3 4

3 5

2 5

1 2

3 5

3

6

1 2

1 2

1 3

2 3

1 2

1 3

Sample Output

4

2

3

3

2

Explanation

The sample input consists of 5 test cases.

In the 2nd test case, 3 people opted for the same 1 or 2 cabins, and

in order to prevent the worst case of all the 3 of them getting the

ticket, we can give out at most 2 tickets.

In the 3th test case, we can give out 3 tickets and still make sure

that regardless of who gets a ticket, any winner can be housed in a

cabin of their choice.

Palindromic Moments
Problem Statement

This challenge is sponsored by Morgan Claypool Publishers.

Bob, Hannah, and Otto like to celebrate palindromic dates. A

palindromic date is one in which the numbers in the date read the

same forwards and backwards. They were very happy with 2015,

which has 15 palindromic dates:

 5th of January, October, November and December

in day/month/year format: 5/1/15, 5/10/15, 5/11/15, 5/12/15

 Eleven days in May listed in month/day/year format: 5/1/15 and

5/10/15 through 5/19/15

Note: These dates are palindromic in the sense that, if the forward

slash delimiter (/) is disregarded, the numbers in the date read the

same forwards and backwards.

While they wait to celebrate the next palindromic date on November

5th, they have decided to they would like to start celebrating

palindromic moments. They define a palindromic moment as a

palindromic string obtained by formatting a date-time combination

using one of the following date prefixes and one of the following

time suffixes:

 Date prefix:

Combinations of month, day,

year: Mdyy, MMdyy, Mddyy, MMddyy, Mdyyyy, MMdyyyy,Mddyyyy, MMddy

yyy

Combinations of day, month,

year: dMyy, dMMyy, ddMyy, ddMMyy, dMyyyy, dMMyyyy,ddMyyyy, ddMMy

yyy

 Time suffix:

Combinations of hour, minutes,

seconds: hmmss, hhmmss, Hmmss, HHmmss

Where

 M is the month of the year as a number, e.g. January = “1” and

October = “10”

 MM is the month of the year as a number with a leading zero if

the month of the year is one digit long, e.g. January = “01” and

October = “10”

 d is the day of the month as a number, e.g. first = “1” and

fifteenth = “15”

 dd is the day of the month as a number with a leading zero if

the day of the month is one digit long, e.g. first = “01” and

fifteenth = “15”

 yy is the last two digits of the year, e.g. 2000 = “00”, 12015 =

“15”

 yyyy is the complete year as a number, e.g. 512 = “512”, 2000

= “2000”, 12015 = “12015”

 h is the hour in (AM/PM), e.g. 1 pm = “1”, 12 am = “12”

 hh is the hour in (AM/PM) with a leading zero if the hour is one

digit long, e.g. 1 pm = “01”, 12 am = “12”

 H is the hour in the day, i.e. 0 <= H <= 23, e.g. 1 pm = “13”,

12 am = “0”

 HH is the hour in the day with a leading zero if the hour is one

digit long, e.g. 1 pm = “13”, 12 am = “00”

 mm is the minute in the hour, 5 past the hour = “05”, 30 past

the hour = “30”

 ss is the second in the minute, 5 past the minute = “05”, 30

past the minute = “30”

For example, during this competition on October 24, 2015, there

are four palindromic moments:

 1:01:42 AM (using the dMyy prefix and

the hmmss suffix): 24101510142

 1:42:01 AM (using the Mdyy prefix and

the hmmss suffix): 10241514201

 1:01:42 PM (using the dMyy prefix and

the hmmss suffix): 24101510142

 1:42:01 PM (using the Mdyy prefix and

the hmmss suffix): 10241514201

Note that for October 24, the MMddyy, Mddyy, and MMdyy prefixes are

equivalent to the Mdyyprefix. Similarly for this date,

the ddMMyy, ddMyy, and dMMyy prefixes are equivalent to

thedMyy prefix.

Input Format

The input begins with an integer t, 1 <= t <= 20, on the first line,

which indicates the number of test cases.

Following this, there are t test cases on separate lines, each

containing a single integer Year, 10 <= Year <= 106.

Output Format

For each test case, you should output, on a line by itself, the

number of palindromic moments that occur during the year given in

the test case.

Notes:

 We are interested in the total number of unique palindromic

moments in a given year. If a moment is palindromic when

using two or more different suffix/prefix combinations, this

instance counts as a single palindromic moment. It should not

be double counted.

For example, November 11, 2010 1:11:11 am is palindromic

when combining theMMddyy prefix and Hmmss suffix or

the MMddyy prefix with the HHmmss suffix. Even though these

combinations form two different

palindromes, 11111011111 and 111110011111, this should count

as a single palindromic moment.

 You must account for the different number of days in each

month and for leap years. However, you should ignore leap seconds.

Sample Input

2

2015

2016

Sample Output

https://en.wikipedia.org/wiki/Leap_year
https://en.wikipedia.org/wiki/Leap_second

5626

3761

Explanation

Test Case 1

There are 5626 palindromic moments during 2015. For example,

the following list shows the 36 palindromic moments on January 1,

2015:

 12:51:11 AM (using the Mdyy prefix and

the Hmmss suffix): 111505111

 1:02:11 AM (using the Mdyyyy prefix and

the hmmss suffix): 11201510211

 1:10:10 AM (using the MMddyy prefix and

the hmmss suffix): 01011511010

 1:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 111515111

 2:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 111525111

 3:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 111535111

 4:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 111545111

 5:11:01 AM (using the Mddyy prefix and

the hmmss suffix): 1011551101

 5:11:10 AM (using the MMdyy prefix and

the hmmss suffix): 0111551110

 5:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 111555111

 6:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 111565111

 7:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 111575111

 8:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 111585111

 9:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 111595111

 10:21:01 AM (using the Mddyyyy prefix and

the hmmss suffix): 1012015102101

 10:21:10 AM (using the MMdyyyy prefix and

the hmmss suffix): 0112015102110

 11:51:11 AM (using the Mdyy prefix and

the hmmss suffix): 1115115111

 1:02:11 PM (using the Mdyyyy prefix and

the hmmss suffix): 11201510211

 1:10:10 PM (using the MMddyy prefix and

the hmmss suffix): 01011511010

 1:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 111515111

 2:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 111525111

 3:11:01 PM (using the Mddyy prefix and

the Hmmss suffix): 10115151101

 3:11:10 PM (using the MMdyy prefix and

the Hmmss suffix): 01115151110

 3:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 111535111

 4:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 111545111

 5:11:01 PM (using the Mddyy prefix and

the hmmss suffix): 1011551101

 5:11:10 PM (using the MMdyy prefix and

the hmmss suffix): 0111551110

 5:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 111555111

 6:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 111565111

 7:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 111575111

 8:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 111585111

 9:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 111595111

 10:21:01 PM (using the Mddyyyy prefix and

the hmmss suffix): 1012015102101

 10:21:10 PM (using the MMdyyyy prefix and

the hmmss suffix): 0112015102110

 10:51:11 PM (using the Mdyy prefix and

the Hmmss suffix): 1115225111

 11:51:11 PM (using the Mdyy prefix and

the hmmss suffix): 1115115111

In a similar way we may calculate the remaining palindromic

moments for the rest of 2015, resulting in the reported overall sum

of 5626 unique palindromic moments for the year.

Test Case 2

There are 3761 palindromic moments during 2016.

Mr. Pippo's Pizza
Problem Statement

Mr. Pippo wants to start a new pizza shop. Everything about his

pizzas is unique — the recipe is unique, the taste is unique, and

even the shape of pizzas is unique. Instead of having a round shape

like every other pizza, Mr. Pippo makes his pizzas in polygon

shapes. For example, he can make his pizzas in a triangular shape

or in a pentagonal shape.

Before serving a pizza, Mr. Pippo cuts it into triangular pieces.

However, there are different ways he can cut the pizza. For

example, a pentagonal pizza can be cut in five different ways as

shown in the following figure. Each day, Mr. Pippo chooses a

particular shape which can only be cut in an odd number of ways.

Note that all the five cuts in the figure happen to be rotationally

symmetric, but each of them is considered distinct.

Figure: Different ways a pentagonal pizza can be cut

Your task in this problem is to determine the shape of the pizza.

Given the number of ways the pizza can be cut, you have to

determine how many sides the pizza has.

Further clarification regarding the ways a pizza can be cut is given

below:

 A pizza can only be cut by connecting two vertices,

 Two cuts on the pizza cannot cross each other, and

 For an n-polygon there would be exactly (n-3) cuts which divide

the pizza into (n-2) pieces.

Input Format

There will be up to 100 lines given where each line represents one

test case. For each test case, the number of ways the pizza can be

cut will be given. The number will be always odd and can be up to

308 digits long. The input is finished when end-of-file is reached.

Output Format

For each test case, print on a single line the number of sides the

pizza has.

Sample Input

1

5

Sample Output

3

5

Explanation

For the first line of input, there is only one way to "cut" the pizza if

the pizza is a triangle. This one way consists of no cuts at all.

For the second line of input, if there are five ways to cut the pizza,

the pizza must be a pentagon, as shown in the figure in the problem

description.

Zoom In
Problem Statement

Some years ago, we had terminals that were capable of supporting

only ASCII characters. We would like your help to construct a

program, which given an input string and specific printing rules,

produces the same text in a bigger layout.

Input Format

On the first line of input is an integer n, 1 <= n <= 100,

representing how many columns each character will use when

printed "zoomed-in".

The next line contains an integer m, 1 <= m <= 100, representing

how many rows each character will use when printed "zoomed-in".

Note that n and m are not necessarily equal.

The third line contains an integer k, 3 <= k <= 95, which indicates

how many characters may need to be translated.

Following these first lines, are k descriptions of the "zoomed-in"

characters, formatted as follows:

 On a line by itself, a single character, which has an ASCII value

of between 32 and 126, inclusive

 m lines, each containing n characters, that give the "zoomed-in"

representation of the character on the previous line

Following the descriptions of the zoomed in characters, is an integer

number x, 1 <= x <= 500.

Finally there are x lines, each containing a string of up to 2,000

characters, and ending with a new line. The characters in this string

will be chosen from the set of k characters previously specified.

Notes:

 We don't know if k sets (i.e. the descriptions of the k "zoomed-

in" characters) are given in a sorted or random order.

 The "zoomed-in" version of an empty string is m blank lines (i.e.

lines with only a newline character).

Output Format

For each of the x strings, you should output the “zoomed-in”

version. Each string should begin on a newline.

Note: You should perform only the transformation that is specified.

You should not add any space between your printed letters that is

not in the transformation.

Sample Input

4

4

3

H

H H

H%%H

H%%H

H H

i

 ()

 II

 II

!

 II

 II

 II

 ()

1

Hi!

Please note that the line after () and before II contains 4 spaces.

Sample Output

H H () II

H%%H II

H%%H II II

H H II ()

Explanation

For clarity, we will add dashes where the spaces would appear in the output in this

explanation.According to the input, each character will use 4 rows and

4 columns, and there are 3 characters that may be translated.

A capital H ('H') should be translated as

H--H

H%%H

H%%H

H--H

A lower-case i ('i') should be translated as

-()-

-II-

-II-

An exclamation mark ('!') should be translated as:

-II-

-II-

-II-

-()-

We are then asked to print the "zoomed in" version of the string

"Hi!". The output would be the following (with spaces where the

dashes are located):

H--H-()--II-

H%%H-----II-

H%%H-II--II-

H--H-II--()-

High Score
Problem Statement

This challenge is sponsored by the IEEE Women in Engineering.

Find an input which will make the provided Java program give the

highest output. An equivalent Python v.3 program is also provided.

The programs are accessible via the "Programs" tab in the ribbon

above with options: "Problem", "Submissions", "Leaderboard",

"Discussions", and "Programs"

The best solution will get a full score, while others will receive an

exponentially decaying score: losing 1% of the score for each unit

decrease in the output.

Input Format

None.

Output Format

Your program should produce a legal input for the Java (or Python

equivalent) program listed in the "Programs" tab.

The first line of of your solution's output should be a non-negative

integer N representing the number of lines to follow.

The following N lines should each contain exactly 10 non-whitespace

characters.

Sample Output

2

Abcde_-!@#

0#T234<>?,

Explanation

No input will be provided to your program. Your program should

produce a fixed output according to the instructions provided above

which will be then automatically provided as input to the given Java

(or Python equivalent) program. For example, in this case, we may

assume that you have written a program that outputs the 3 lines

provided above as theSample Output. This program outputs a value of

2 for N, and then two lines follow with 10 characters each.

When this output is provided as input to the Java program, it

outputs a value equal to 998. As it turns out, this is not a very good

input. The score for our solution would be:

0.99 MaxScore - 998

where MaxScore is the maximum possible score for this challenge.

MaxScore is large enough that this rounds to zero.

Note: The scores will be rounded to two decimal places.

Threesome Poker
Problem Statement

Help IBM puzzlemaster to test answers to May’s 2015 challenge:

Three people are playing the following betting game.

Every five minutes, a turn takes place in which a random player rests and the

other two bet against one another with all of their money. The player with the

smaller amount of money always wins, doubling his money by taking it from the

loser.

For example, if the initial amounts of money are 1, 4, and 6, then the result of

the first turn can be either 2,3,6 (1 wins against 4); 1,8,2 (4 wins against 6);

or 2,4,5 (1 wins against 6). If two players with the same amount of money play

against one another, one of the two players would win, and the game will

immediately end for all three players after that turn.

The task for the challenge is to find initial amounts of money for the three

players, where none of the three has more than 255, and in such a way that the

game cannot end in less than one hour.

In the example above (1,4,6), there is no way to end the game in less than 15

minutes. One possible sequence of moves is:

(1,4,6)

(1,8,2), after player 2 plays player 3 in turn 1

(2,7,2), after player 1 plays player 2 in turn 2

(4,7,0), after player 1 plays player 2 in turn 3, and we arbitrarily choose

player 2 as the winner

Note: The first turn is played after five minutes, so the game above, with its 3

turns, takes 15 minutes. Furthermore, the maximum number of turns that can be

completed in one hour is 11.

Input Format

Three space-separated, positive integers representing a potential

solution to the challenge.

Output Format

The program should output either the word "Ok" if the answer is

correct (i.e. the game needs an hour or longer to end), or in case

http://domino.research.ibm.com/Comm/wwwr_ponder.nsf/Challenges/May2015.html

there exists a series of turns in which a player wins the game in less

than an hour, then the program should output at most 12 lines

showing the amounts of money that each player has. In particular,

in the latter scenario, the first line of the output should be identical

to the given input, and then each subsequent line should represent

a possible state of the game after a turn is played, with the previous

line considered as a starting state. Since by definition in this

scenario there will be a winner, one of the amounts in the last line

of the output should be zero.

If there are several ways for the game to end in less than an hour,

find the shortest one, i.e. the one with the fewest turns. If there are

several shortest ones, choose the one in which the winning player

and losing player in each round is first in lexicographical order.

Please refer to the explanation of the sample input and output for

more information about this tie breaking procedure.

Sample Input

3 27 8

Sample Output

3 27 8

6 24 8

6 16 16

6 32 0

Explanation

The first line of the output is identical to the given input. Then, in

the first turn of the game (second line of the output), player 1 beats

player 2. In the second turn (third line of the output), player 3

beats player 2. In the final round (final line of the output) player 2

beats player 3.

This game-play can be summarized in a single line comprised of

space separated pairs that describe the winner and the loser of each

turn in the format: ([winner],[loser]). For the example above, this

string summary would be: "(1,2) (3,2) (2,3)" since at first player 1

beat player 2, then player 3 beat player 2 and finally the game

ended with player 2 winning over player 3.

Of course, other game-plays could also result in the same result

(i.e. have a player winning the game in less than an hour), some

with more turns than the one described above, but some as equally

as short (in term of number of turns). For example, such another

equally short series of turns is the following:

3 27 8

3 19 16

6 16 16

6 0 32

However, this game-play would be summarized by the following

string: "(3,2) (1,2) (3,2)" since at first player 3 beats player 2, then

player 1 beats player 2 and finally the game ended with player 3

winning over player 2.

Note though that the last solution has a string representation that

comes later in lexicographical order compared to our first solution

(i.e. solution "(1,2) (3,2) (2,3)" comes before "(3,2) (1,2) (3,2)" in

lexicographical order).

Similarly, another possible series of turns would be:

3 27 8

3 19 16

6 16 16

6 0 32

This series would be represented by the string: "(3,2) (1,2) (2,3)",

which also comes after "(1,2) (3,2) (2,3)" in lexicographical order.

Indeed if you listed all possible games that end in three turns,

"(1,2) (3,2) (2,3)" would be lexicographically smaller than all other

string representations of games. Thus the expected output should

be:

3 27 8

6 24 8

6 16 16

6 32 0

Note: There are two additional sample test cases. You can view

these cases after clicking on the "Run" button.

Snakes & Bunnies
Problem Statement

A group of engineers are playing the Snakes and Bunnies board

game. In this game, each player has one game piece, which moves

according to dice rolls. The game-board is composed by a grid

of N x N numbered squares, which are ordered row-wise from the

bottom-left to the top-right (N is always odd). Some “bunnies” and

“snakes” are depicted on the board, each connecting two squares.

An example of a 5x5 board is shown in the following figure.

Each player starts off the board, next to the starting square. The

gameplay is divided in rounds and players play in sequence, which

is the same every round. Rules are simple:

1. Two standard 6-faced die are rolled by the player and his/her

game piece moves forward on the board, following the square's

numbers. The piece is advanced by a number of squares equal

to the sum of the die.

2. If the dice roll is a double, then the player has an additional

turn just after the current one. Note that the additional turn

begins after applying the additional rules below. The additional

turn follows the same rules of standard turns, except that only

one die can be rolled.

3. If a square is already taken by another player’s token, then the

current player’s token moves forward to the next square not

occupied by a token.

4. If the final position of a player’s token is a square with the head

of a snake, then it must be moved backwards to the square

corresponding to the snake’s tail. Similarly, if the token ends on

a square with bunny’s feet, it goes to the top of the bunny’s

ears (both ears of the rabbit will always point to the same cell).

No square has two or more snake's heads/tails or bunny's

ears/feet on it; there is at most one special drawing for each

cell. Moreover, the last square is always free of drawings.

5. Game ends when a player arrives at the last square or when a

player can move over the last square (for example if the player

is on the second-to-last square and rolls 3+4). In this latter

case, the player stops on the last square and wins.

Note that infinite loops can happen while a player moves: this is the

EVIL CYCLE case! When it happens, the game ends and the player

in the evil cycle wins the game.

For example, consider a board in which squares 10 and 11 are

already occupied, and there is a slide from square 12 back to square

10. If a player lands on square 10, they would advance to square

11, since square 10 is already occupied. Square 11 is also occupied,

so they would advance to square 12. Here they take the slide back

to square 10, and then repeat the moves. They would continue to

move between squares 10, 11, and 12 forever!

Your task is to find the final position of every player's token, given

as input the number of players, the game-board configuration, and

the sequence of dice rolls.

Notes:

 The given sequence of dice rolls may not always lead a game to

an end. There will be no extra dice rolls after a game has

ended. There will always be sufficient dice roles for a player to

complete their turn.

 If a player lands on the tail of snake or the ears of a bunny, the

player does not make any special moves.

Input Format

The first line of the input contains the integer N (1 < N < 100

and N is odd), which is the dimension of the game-board.

The following N lines contain the game-board configuration: each

line contains N characters, and each character represents a square

of the board. The character '-' represents a normal square, i.e. one

with no snake heads/tails nor bunny feet/ears depicted on it; digits

(0-9) represent bunnies and letters (a-z) represent snakes. There

can be at most 10 bunnies and 26 snakes, and each represented by

an appropriate pair of digits or letters. Given a pair of identical

letters representing a snake in two numbered squares, the head of

the snake are located in the square with the higher number, and the

tail is located in the square with the lower number. Given a pair of

identical digits representing a bunny in two numbered squares, the

feet of the bunny is located in the square with the lower number,

and the ears are located in the square with the higher number.

So, for example, the game-board of the figure above could be

represented as follows:

---a-

-a---

–---1

--b--

b-1--

After the game board representation, the following line contains an

integer M (2 <= M <= 10), which is the number of players.

Then, the sequence of dice throws follow, each dice result is

represented by a single line containing one integer between 1 and

6, inclusive.

Output Format

The output is a single line containing M integers separated by a

blank space. The first integer is the final position on the game-board

of the first player (i.e. the one who rolled the dice first), the second

integer is the final position of the second player, etc.

In case of evil cycle, the output is a single line containing the string

“PLAYER x WINS BY EVIL CYCLE!”, where x is the player number (1

to M).

Sample Input

5

---a-

-a---

----1

--b--

b-1--

2

6

2

2

1

3

2

1

2

3

4

1

1

5

Sample Output

13 25

Explanation

The board in this test case is the board in the figure below.

Note that in the board above there is one bunny, represented by the

number '1'. It's feet are at square 3 and its ears are at square 15.

There are two snakes. The snake indicated by the letter 'b' has a

head at square 8 and a tail at square 1. The snake indicated by the

letter 'a' has a head at square 24 and a tail at square 19.

Next we are told that there are 2 players.

First, player 1 rolls a 6 and a 2, advancing to square 8, at the head

of the snake. Here, he moves back to the snake's tail, ending at

square 1.

Next, player 2 rolls a 2 and a 1, advancing to square 3. Since 3 is at

the feet of a bunny, she advances to square 15.

Next, player 1 rolls a 3 and a 2, advancing to square 6.

Next, player 2 rolls a 1 and a 2, advancing to square 18.

Next, player 1 rolls a 3 and a 4, advancing to square 13.

Next, player 2 rolls double 1's, advancing to square 20. Since the

player rolled doubles, player 2 rolls a single die and gets a 5. She

then advances to square 25.

Since player 2 has reached the final square, the game is over.

Note: If you click on the "Run Code" button, you will be able to see

an additional sample test case with an example of an EVIL CYCLE.

IEEE State of Mind
Problem Statement

Finite State Machines (FSMs) can be used to model systems whose

output depends on the current state and its inputs. The states can

represent many different systems like the on/off state of traffic

lights at an intersection, the valve state of thrusters on a

spacecraft, the click/key combinations entered by a user for a

keyboard shortcut, or the send/receive steps in a communication

protocol.

An FSM is defined by a set of states, inputs, and outputs. The states

represent a known configuration of the system at a specific time.

Transitioning to a new state depends on the current state and the

inputs provided. This will in turn also produce an associated output

for the system.

One of the uses of FSMs is to design and analyze logic circuits with

memories like flip-flops. Your task is to write a program to visualize

the timing diagram relating the inputs and outputs while printing

the current state number to help analyze the circuit.

For the purpose of the program, you can assume that there

are N states with M inputs. States are labeled with numbered

subscripts in the range S0 to SN-1. The inputs are each labeled with a

single uppercase character in the range 'A' to 'J', inclusive. You may

assume that no letter or state number is skipped. Each state

has P uniquely defined transitions to other states (the transitions

are unique in the sense that no set of inputs will trigger more than 1

transition). A transition is only taken when the input conditions are

satisfied. Transitions are evaluated at the beginning of each of

the T discrete time steps.

Input Format

Input begins with a line containing N and M, where 1 ≤ N < 100 and

1 < M < 10.

Then there are N lines, each describing the output of the system

and the transitions from this state. The first line contains a

description of state S0, the second line describes S1, etc. These lines

all have the following format:

StateOutput P VariableExpression1/Dest1 VariableExpression2/Dest2 ...VariableExpr

essionP/DestP

where

 StateOutput is either a 0 or 1, representing the value that is

output when the system is in this state

 P is the number of transitions from this state

 VariableExpressioni is a comma-delimited list

of Variable=Value tokens. For a transition ito be activated, all of

the input variables given in the VariableExpressioni must have the

values listed in this expression

 Desti, 1 <= i <= P, is a destination state number, in the range

[0..N), for transition i

Following the description of the states, is a line containing two

integers, T and I, where T gives the number of timesteps (1 <= T <

1000), and I gives the number of the initial state (0 <= I < N).

The input ends with M * T lines that provide the inputs for

all M variables in each of the Ttimesteps. The first M values provide

inputs for the M variables during the first timestep, the

second M values provide inputs for the M variables during the

second timestep, and so on.

The transitions should be interpreted as follows. Assume that we are

in a state Sj. Assume further that there are four inputs, and the

current input provided for the current timestep is (1,0,1,0). We map

these inputs to the variables, starting with letter 'A', so A = 1, B =

0, C = 1, and D = 0. We would then look for transitions defined on

the line corresponding to state Sj. Since transitions must be unique,

only one of the following VariableExpressions could appear in the list of

expressions: A=1, B=0, C=1, D=0, A=1,B=0, A=1,C=1, A=1,D=0, A=1,B=0,

C=1, etc. If such a transition is the ith transition specified, the new

state would be Desti. If there are no matches, the system remains in

the current state.

Output Format

The output consists of a waveform. The waveform is represented by

underscores, ‘_’, for the number 0, and asterisks, ‘*’, for the

number 1.

A maximum of 16 ticks are printed together, where each time tick is

3 characters wide. The line numbers are labeled with the signal

names as shown in the example.

As shown in the example below, on the first line of the grouping is

the text Tick #X where Xis replaced by the number of the first tick in

the grouping.

Next come waveforms for each of the variables, in alphabetical

order, one per line. On these lines the variable name is output,

followed by five spaces, and then the waveform.

Then the waveform of the system output is displayed. This line

begins with the word OUT, followed by 3 spaces, and then the

waveform.

Finally, on the last line the numeric value of the system output is

displayed. This line begins with the word STATE. The numeric values

of system output should always be aligned with the third column of

the respective tick.

If not all ticks have been displayed, then a blank line should be

output, followed by the next group of ticks in the same format.

Sample Input

2 3

1 2 A=1,B=1,C=1/1 A=1,B=0/0

0 1 A=0/0

20 0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

Sample Output

Tick #1

A ____________************____________************

B ______******______******______******______******

C ___***___***___***___***___***___***___***___***

OUT *********************___*********************___

STATE 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Tick #17

A ____________

B ______******

C ___***___***

OUT ************

STATE 0 0 0 0

Explanation

The sample input executes a parity check FSM. There are N=2

states with M=3 inputs. Since there are 3 inputs, these inputs are

labeled A, B, and C.

State 0, S0, outputs the value 1 (logic high). There are two

transitions originating from this state. The first transition goes

to S1 when input A=1, B=1, and C=1. The second transition goes

to S0 when input A=1 and B=0 (that’s a self-loop to the same

state). C can take any value in the second transition.

S1 outputs the value 0 (logic low). There is only one transition

originating from this state defined in the input. This transition goes

to S0 when A=0.

Note that although not defined, there are implicit transitions to

satisfy the other cases that are not explicitly described in the input.

The implicit transitions are all self-loops to the same state.

Prior to tick t=1, we are in the initial state, S0. The input is set

to A=0, B=0, and C=0, therefore we take the implicit self-loop

transition and stay in S0 and output the value associated with the

state, i.e. 1.

When we start ticks t=2 through t=7, we are still in S0. In each of

these cases, we take the implicit loop to the same state and nothing

changes in the output.

In tick t=8, the inputs, A=1, B=1, and C=1, trigger the transition to

state S1. This changes the output of our logic circuit to a 0.

In tick t=9, the input, A=0, trigger the transition to state S0. This

changes the output of our logic circuit to a 1.

The same pattern of inputs is repeated a few more times. Tick 17

begins on a new line because we limit the output to 16 ticks per

line.

Car Spark
Problem Statement

John is a computer programmer and is highly known for his

achievements in his field. In addition to being a passionate software

professional, he is also passionate about motorcars and motorbikes.

So, after ending his successful and lengthy software career, he

decides to take up his passion. He starts an organization by the

name "Car Spark" (CS). CS is an organization from which you can

rent luxury cars of your choice on an hourly rental basis.

CS would like to accept bookings for the weekend in advance, and

then decide which bookings to process based on the profits that

would be earned. When placing an order, customers quote the

amount that they are willing to pay for that vehicle during that

particular timespan. Since a car can only be given to one customer

during a particular time period, CS must be careful about which

bookings to process.

Initially CS has only one vehicle available for rent. To be the first

hire for CS, you must develop a program to maximize revenue on

bookings for this vehicle.

Input Format

Input begins with a single integer T, 1 <= T <= 100, which denotes

number of test cases.

Each test case begins with a single integer N, 1 <= N <= 2000,

which is the number of bookings John received.

The remainder of the test case consists of N lines containing three

integers Bs, Be, and Ai each separated by a space, where Bs is the

booking start time, Be is the booking end time, and Ai is the amount

that the customer is willing to spend for the entire booking. Note

that 0 <= Bs < Be<= 48 and 1 <= Ai <= 100000.

Note: The car may only be rented during the weekend, meaning

from 12:00 AM on Saturday to 12:00 AM on Monday. Since the two

days in the weekend have 48 hours, 12 noon on a Sunday would be

the (24+12) 36th hour. Similarly, if the booking start time is 10:00

PM on Saturday and the booking end time is 12:00 AM on Sunday,

then Bs would be 22 and Be would be 24.

Output Format

You are to output a single line for each test case, giving the

maximum revenue John can make from the orders he received.

Sample Input

2

4

1 2 100

2 3 200

3 4 1600

1 3 2100

3

1 10 2000

2 5 100

6 9 400

Sample Output

3700

2000

Explanation

For the first test case, for the time slot 1-3 maximum revenue John

can make is 2100 (Max(100+200, 2100)) and for slot 3-4 he can

make 1600. The maximum total revenue is 3700 (2100+1600).

Similarly for second test case, the maximum revenue he can

generate is 2000.

Dictionary Strings
Problem Statement

Gopal is preparing for a competitive exam and he has to prepare

many topics for it. To remember the concepts better he identified a

set of words from each topic. He prepared dictionaries for each of

these topics with the set of identified words so that he can refer to

them easily.

While recollecting the topics Gopal sometimes could not remember

to which dictionary a certain word belongs. After all the hard work,

Gopal didn’t want to lose marks due to this confusion. So he

requested his friend, Govind, to help him identify a way to check if a

word belongs to a dictionary.

Govind, being a very good friend of Gopal, wants to help him do

better in the exam. So, after some thought, he finally came up with

a solution.

For each dictionary, a string is chosen from which all the words can

be made by selecting a subset of the characters from the string and

rearranging them. (It is not necessary that the characters are

consecutive and/or in the same order as in the string). They called

this string a Dictionary String. When confused about to which

dictionary a word belongs, Gopal can check if the word can be

extracted from the Dictionary String for that dictionary.

To qualify as a Dictionary String, all the letters needed to explicitly

form each word of the dictionary must be present in the string. You

cannot reuse letters. Thus, the string aab is not a Dictionary String

for a dictionary containing the word aaa since this word needs 3 a's

whereas the candidate Dictionary String has only two a's.

To help Gopal memorize the Dictionary Strings better, Govind

inserted extra characters in some of the Dictionary Strings that

appeared harder to memorize. To distinguish those strings from

others he calls a string without any extra characters, a Perfect

Dictionary String.

Govind would like your help in verifying his program. For a set of

words in a dictionary, you should indicate whether a string is a

perfect dictionary string and/or a dictionary string. If a word is not a

dictionary string, he would like you to tell him the minimum number

of characters needed to convert the string to a dictionary string.

Notes:

Some of the test cases are very large, and may require you to

speed up input handling in some languages.

In C++, for example, you can include the following line as the first

line in your main function to speed up the reading from input:

std::ios_base::sync_with_stdio (false);

And in Java, you can use a BufferedReader to greatly speed up

reading from input, e.g.:

BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));

// Read next line of input which contains an integer:

int T = Integer.valueOf(reader.readLine());

Input Format

Input begins with a single integer T, 1 <= T <= 100, which denotes

number of test cases.

Each test case begins with a line, which contains 2 space-separated

integers D and S. Drepresents the number of words in a dictionary,

and S represents the number of potential dictionary strings to be

checked. Note that 1 <= D, S <= 100.

Next follows D lines, each containing a word in the dictionary.

The remaining S lines in the test case each contain a potential

dictionary string.

Notes: The words in the dictionary and the potential dictionary

strings will consist of only lower-case letters. The lengths of these

strings are greater than or equal to one character and less than or

equal to 40,000 characters.

Output Format

For each of the S potential dictionary strings, you should output a

line with two values separated by a space in the following format:

A1 A2

Where

 A1 is either Yes or No denoting if a string is a Dictionary String or

not.

 If A1 is No, then A2 is the minimum number of characters needed

to make the string a Dictionary String. If A1 is Yes,

then A2 is Yes if the string is a Perfect Dictionary String,

and No otherwise.

Sample Input

1

5 3

ant

top

open

apple

lean

anteplop

antelope

penleantopan

Sample Output

Yes Yes

No 1

Yes No

Explanation

For the sample input, there is only one test case with 5 words in it

and 3 strings to be checked.

anteplop: contains all the words from the dictionary and no extra

characters. So it is both a Dictionary String and a Perfect Dictionary

String. Hence, the output is Yes Yes.

antelope: the words “apple” cannot be made from this string. So it

is not a Dictionary String and is missing 1 character (‘p’) to become

a dictionary string. Hence the output No 1.

penleantopan: all the words of the dictionary can be made from this

string but it also contains extra characters that are not required to

build the words of the dictionary. So it is a Dictionary String but not

a Perfect Dictionary String.

Light Gremlins
Problem Statement

This challenge is sponsored by Eta Kappa Nu.

There are a group of gremlins that live in a long hallway in which

there are a series of light switches. At the beginning of each night,

all of the light switches are off. Then, one at a time, each gremlin

does the following:

 The gremlin chooses a prime number p, that has not been

chosen by any previous gremlin that night.

 The gremlin runs down the hallway flipping every pth switch.

The owner of the hallway, who is very concerned about his

electricity bill, has asked you to determine how many switches are

on at the end of the night.

Note: no two gremlins will choose the same prime number.

Consider the following example where the hallway has 21 switches

and there are three gremlins. At the beginning of the night, all

switches are off, as shown in the figure below.

The first gremlin chooses the prime number 7, and flips the 7th, 14th,

and 21st switch. Now the configuration is:

The second gremlin chooses the prime number 13, and flips just the

13th switch, because there is no 26th switch. Now the configuration is:

The last gremlin chooses the prime number 3. It flips the 3rd, 6th, 9th,

12th, 15th, 18th, and 21stswitch. Note that when he flips the 21st switch,

it is turned back off. The final configuration is:

For this example, you would report that there are 9 lights on at the

end of the night.

Input Format

The input begins with an integer t, 1 <= t <= 20, on a line by itself.

Then follow t lines, each describing a test case that you must

evaluate. The test cases have the following format:

[switch] [n] [prime_1] [prime_2] ... [prime_n]

Where

 [switch] is the number of switches in the hallway, 1 <=

[switch] <= 1018

 [n] is the number of gremlins who live in the hallway, 1 <= [n]

<= 24

 The prime number chosen by the ith gremlin is given by

[prime_i]. All primes are greater than or equal to 2 and less

than 104.

Output Format

For each test case, you should output a single integer that indicates

how many switches are on at the end of the night.

Sample Input

3

21 3 7 13 3

20 1 31

30 3 2 3 5

Sample Output

9

0

15

Explanation

The first test case corresponds to the example given in the Problem

Definition, which as described above results in 9 "on" switches at

the end of the night.

In the second test case, there is a single gremlin, who chooses the

prime 31. The hallway consists of only 20 switches, so there is no

31st switch. Thus, no switches are turned on.

The last test case consists of a hallway of length 30, and three

gremlins. The action of the gremlins is as follows:

 The first gremlin flips switches {2, 4, 6, 8, 10, 12, 14, 16, 18,

20, 22, 24, 26, 28, 30}. All of these switches were previously

off, so they are now on.

 The second gremlin flips switches {3, 6, 9, 12, 15, 18, 21, 24,

27, 30}. Of these, {6, 12, 18, 24, 30} were previously on, so

they are now off. This results in the following switches being

on: {2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22, 26, 27, 28}.

 The third gremlin flips switches {5, 10, 15, 20, 25, 30}. Of

these, {10, 15, 20} were previously on, so they are now off.

This results in the following switches being on: {2, 3, 4, 5, 8, 9,

14, 16, 21, 22, 25, 26, 27, 28, 30}.

Thus, there are 15 switches on at the end of the night.

Chocolate 2
Problem Statement

This challenge is sponsored by the IEEE University Partnership Program.

Let us consider a rectangular bar of chocolate

containing n times d chunks of chocolate. Each chunk can be

uniquely identified by a pair of integers (i1, i2), where each

coordinate i1indentifies the row of the chunk and i2 identifies the

column. i1 can take values between 1 andn, inclusive, and i2 can take

values between 1 and d, inclusive. The chunk at the top left corner

of the bar is identified by (1,1).

One wants to eat the whole bar using a very elaborate method. The

principle is that when the chunk with coordinates (i1,i2) is selected to

be eaten, all remaining chunks with coordinates (j1, j2) such

that j1 >= i1 and j2 >= i2 are eaten at the same time. The question

we ask is:

Given n and d, how many different ways of eating the whole bar are

there?

Note: The timeouts have been increased by approximately 50% for

this problem.

Input Format

The first line of input contains the integer n. The second line of input

contains the integer d. Note that 1 <= n, d <= 100.

Furthermore, n and d are chosen such that the maximum number of

ways of eating the whole bar will never exceed 10138.

Output Format

The output contains the answer followed by a newline character.

Sample Input

2

2

Sample Output

10

Explanation

Suppose that we label the chocolate bar chunks as follows:

|A|B|

|C|D|

In this bar, chunk A identified as (1,1), chunk B is identified as

(1,2), chunk C is identified as (2,1), and chunk D is identified as

(2,2).

There are ten ways this bar could be eaten:

1) A (with B, C, and D at the same time)

2) B (with D), and then A (with C)

3) B (with D), then C, then A

4) C (with D), then A (with B)

5) C (with D), then B, then A

6) D, then A (with B and C)

7) D, then C, and then A (with B)

8) D, then B, and then A (with C)

9) D, then C, then B, then A

10) D, then B, then C, then A

Note: Two other test cases are available if you click on the "Run

Code" button.

SAD: Long Way from Home
Problem Statement

Subterranean Antisocial Demons (SADs) live and roam in a network

of connected caves. They move from cave to cave following very

strict rules:

 Only one SAD may move at a time.

 Every time a SAD moves, it must move from one cave to an

adjacent cave.

 No two SADs can occupy the same cave at the same time.

Thus, if a cave is already occupied by a SAD, another SAD

cannot move into it.

 A SAD may move out of its home cave to allow another SAD to

pass through.

 Every SAD must be in its home cave at the end of the day.

The SADs have been busy roaming all day. Your task is to make the

SADs happy. Help them find the fastest way for each one to return

to its home.

Input Format

The first line of input will contain an integer t, 1 <= t <= 10 that

indicates how many test cases are present.

Next follow t test cases with the following format:

The first line of the test case is an integer n, 1 <= n <= 15.

Next come n lines that give the current position of each SAD in the

form:

Di Cj

where Di and Cj are integers between 1 and 16 inclusive. This

indicates that the SAD with ID Diis currently in cave with ID Cj. Note

that the home cave for a SAD is the cave with an ID equal to the

SAD’s ID. Since a SAD can only move into an empty cave, there will

always be more caves than SADs, and therefore the number of cave

ID's will always be larger than the number of SAD ID's.

On the next line is an integer l, n <= l <= 120.

Next come l lines that give connection between caves in the form:

Ci Cj

where both of these IDs are integers between 1 and 20, inclusive.

This line indicates that it is possible to get from the cave with

ID Ci to the cave with ID Cj, and from the cave with ID Cj to the cave

with ID Ci.

Output Format

For each test case, you should output, on a line by itself, a single

integer equal to theminimum number of moves needed to get every

SAD from its current location to its home cave.

Note: it will always be possible for every SAD to reach its home, and the

minimum number of moves needed is never greater than 30.

Sample Input

1

3

1 5

2 1

3 2

5

1 2

2 3

3 4

4 5

5 1

Sample Output

3

Explanation

As shown in the next figure, at the beginning of the first test case,

SAD 1 is in cave 5, SAD 2 is in cave 1, and SAD 3 is in cave 2.

There are two legal moves in this scenario: SAD 1 could move to

cave 4 or SAD 3 could move to cave 3.

In the first move, then, SAD 3 moves to cave 3. As shown in the

next figure, it is home. Now, for the second move, there are four

legal moves: SAD 1 could move to cave 4, SAD 2 could move to

cave 2, SAD 3 could move to cave 2, or SAD 3 could move to cave

4.

In the second move, then, SAD 2 moves to cave 2. As shown in the

next figure, it is also home. For the third move, there are four legal

moves: SAD 1 could move to cave 4, SAD 1 could move to cave 1,

SAD 2 could move to cave 1, or SAD 3 could move to cave 4.

In the third and final move, SAD 1 moves to cave 1. As shown

below, now all of the SADs are home, and it only took three moves!

Images generated from clipart from www.clker.com.

Shortening in the Real World
Problem Statement

You are part of a large gaming firm which is looking forward to offer

online gaming competitions through live streaming. This means a lot

of users will be looking to share their channels links through

multiple social media networks (e.g: twitter, facebook, etc.)

Your company wants to implement URL redirection, where you will

provide a URL on your website that when requested will redirect

browsers to the links provided by users. Due to the burst of

popularity of e-sport sites, your company did not plan for the large

demand for URLs. The encoded URLs given by the system are very

long and difficult to handle by regular users, reducing the usability

of your system and service.

Your boss comes to you in a panic, hoping that you will be capable

of solving this simple but critical task and help the company help

users to handle URLs in an easy and comfortable manner. As a good

software engineer with some basic understanding of Computer

Science, you devise a way to encode the original encoded URL into a

shorter form through a hash function. As you know, there is always

the risk that your hash function will have a collision, but it is a good

start.

The hash function takes as input the base URL of your company and

the target URL you wish to encode. (For an example of this process,

see the Explanation portion of the sample input, below). As shown in

the figure below, the algorithm proceeds in the following steps.

1) An xor cipher is applied to the target URL, using the base URL of

your company as a repeating key. Here we perform a bitwise

exclusive-or between each byte of the target URL and the base URL.

If the target URL is shorter than the base URL of your company, you

would truncate the base URL so that the lengths are equal. If the

base URL of your company is shorter than the target URL, you

would repeat the base URL as many times as needed to make the

lengths equal.

2) Take the last 8 bytes of the output from step 1, and convert this

to the corresponding unsigned integer. (See the example below for

more details.)

3) Encode this unsigned integer using Base62 encoding. In this

encoding, you convert the integer to a base 62 number, where the

digits 0-9 represent values 0-9, lowercase letters a-z represent

values 10-35, and capital letters A-Z represent values 36-61.

4) The encoded url consists of the base URL, a backslash, and the

base 62 encoded value produced in the previous step.

Notes:

 You should process the URLs using UTF-8 encoding.

 The URL to be encoded will always be at least 8 characters

long.

 The base 62 number should not be padded with extra zeros. For

example, the number "62" should be represented as "10", not

as "010" or "0010" or "00010". The number "0" would be

represented as "0".

 The base URL will never end with a backslash.

Input Format

The first line of input will contain the base URL of your company.

The second line will contain a number n (1 <= n <= 1000) which

will indicate the number of URLs you will need to encode.

The following n lines will contain target URLs to encode.

Output Format

The output should be n lines, where each line will correspond to an

encoded URL.

Sample Input

http://www.ieee.com

2

http://www.ieee.org/xtreme

http://www.ieee.org/membership_services/membership/young_professionals/index.html

Sample Output

http://www.ieee.com/SHPQ4gzW1Y

http://www.ieee.com/Btazwa9mke

Explanation

Consider the first target URL to be

encoded: http://www.ieee.org/xtreme.

We start by finding the UTF-8 encoding of the base

URL http://www.ieee.com and the target URL.

target URL = [0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e,

0x69, 0x65, 0x65, 0x65, 0x2e, 0x6f, 0x72, 0x67, 0x2f, 0x78, 0x74, 0x72, 0x65,

0x6d, 0x65]

base URL = [0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e,

0x69, 0x65, 0x65, 0x65, 0x2e, 0x63, 0x6f, 0x6d]

Now we apply the exclusive-or cipher, repeating the bytes in the

base URL so that the two strings are the same length:

 [0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x69,

0x65, 0x65, 0x65, 0x2e, 0x6f, 0x72, 0x67, 0x2f, 0x78, 0x74, 0x72, 0x65, 0x6d,

0x65]

xor

 [0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f, 0x2f, 0x77, 0x77, 0x77, 0x2e, 0x69,

0x65, 0x65, 0x65, 0x2e, 0x63, 0x6f, 0x6d, 0x68, 0x74, 0x74, 0x70, 0x3a, 0x2f,

0x2f]

=

 [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00, 0xc, 0x1d, 0x0a, 0x47, 0x0c, 0x00, 0x02, 0x5f, 0x42,

0x4a]

Next we take the last 8 bytes of this number and convert it to an

unsigned integer:

0x0a470c00025f424a = 740,573,857,905,066,570

Next we convert this number from base 10 to base 62 to

get: SHPQ4gzW1Y

We then append this number to the base URL to produce the

output:http://www.ieee.com/SHPQ4gzW1Y

Communities
Problem Statement

Social media networks and the amount of information they

aggregate is astonishing. With so much information, new patterns

and interactions of human society can be identified.

In our social network, the relationships model the flow of

information, and they are directed. Alice may subscribe to Bob's

newsfeed, while Bob does not subscribe to Alice's. Moreover, the

flow of information in our network is such that a person can see the

newsfeeds of all people who could reach the person following along

a path in the network. Suppose, then, that Alice subscribes to Bob's

newsfeed, Bob subscribes to Chuck's newsfeed, and Chuck

subscribes to Dave's newsfeed. This would correspond to a simple

linear graph:

Alice <- Bob <- Chuck <- Dave

Then Dave would be able to read his own news items only; Chuck

would be able to read news items posted by either Dave or himself;

Bob would be able to read news items posted by either Chuck, Dave

or himself; and Alice would be able to read everyone's news items.

Note that everyone can read their own newsfeed.

We are interested in the defining a community metric for our social

network. We define a community as a group of people who are able

to see all news items posted by any member of the group. As an

example, in the figure below, there are two communities, each

shown in a different color.

Note that in the community shown in green above, Jose, Willy, and

Elena can all read each other's posts. While Jose, Willy, and Elena

can also read Javier's news items. However, Javier cannot read

news items from Jose, Willy, or Elena, and is therefore not included

in their community.

Your task is to identify the sizes of these communities from biggest

to smallest.

Input Format

The first line of input will contain two space separated integers: the

total number of people that devise the social network, n (1 <= n <=

10000) and m, the number of communities for which you should

print the size. The following lines will contain a directed relationship

between 2 people. If the line reads "Jon Peter", then Peter

subscribes to Jon's news feed, and the relation is Jon -> Peter.

The word "END" will appear on a line by itself after the list of

relationships.

All of the names are strings containing fewer than 50 characters.

Output Format

The output consists of m lines, where each line will correspond to

the size of a community from biggest to smallest. If there are fewer

than m communities, after outputting the size of all existing

communities, output lines containing “Does not apply!” for the

missing values.

Sample Input

6 2

Jose Willy

Willy Elena

Elena Jose

Diego Javier

Javier Gregorio

Gregorio Diego

Javier Jose

END

Sample Output

3

3

Explanation

This input corresponds to the graph described in the problem

statement above.

Note that two additional sample inputs are available if you click on

the "Run Code" button.

Pattern 3
Problem Statement

Vangelis the bear received a digital signal pattern generator that his

brother Mitsos built. The generator produces a signal that is

encoded using the Latin alphabet. Vangelis starts the generator for

some time and records the signal generated. He wants to study the

sample he received and try to identify the smallest pattern that the

generator could be using to generate the sample.

Your task is to help Vangelis by writing a program that will calculate

the length of the smallest valid pattern.

Input Format

The input is made up of multiple test cases.

The first line contains an integer T (1 <= T <= 10), the number of

test cases in this file.

Each line contains an encoded signal. The signal is encoded using

the small letters of the Latin alphabet. The length of a signal is

between 1 and 106 characters, inclusive.

Vangelis has started the recording at the beginning of a pattern, so

each line begins with the first character in the pattern. His recording

lasts for at least one pattern length, but the length of the

recording may not be an exact multiple of the pattern length.

Output Format

There must be T lines of output and each line will contain a single

non-negative integer number, the length of the minimum valid

pattern.

Sample Input

6

abab

abababababababababab

abababababab

abc

aaaaaa

aabaabbaabaabbaabaabbaabaab

Sample Output

2

2

2

3

1

7

Explanation

The repeating patterns in each of the test cases are:

ab

ab

ab

abc

a

aabaabb

Land
Problem Statement

Vangelis the bear bought a real property inside a forest where he

wants to build his new corporate headquarters. The shape of the

land is a strictly convex polygon. This means that the shape is a

polygon with all its interior angles less than 180°. All vertices of the

shape are on a plane, whose locations are given in a Cartesian

coordinate system.

In the plot, there are some really old trees that Vangelis wants to

protect. To do so, Vangelis decided that he will separate his land

into two parts. The first part, where there must not be any trees,

will be used for the headquarters building. The second part, where

the ancient trees reside, will be preserved as a park.

Being a scientist, he decided to make the separation using a

diagonal of the polygon. Your task is to help Vangelis compute the

maximum possible land that he can use to build his headquarters.

Note: A tree cannot appear on the border between the regions.

Thus, in the image below, the maximum area for the

headquarters is not equal to one half the area of the land.

Input Format

The input is made up of multiple test cases.

The first line contains an integer T (1 <= T <= 10), the number of

test cases in this file.

The following repeats T times:

 The first line in the test case contains an integer N (4 <= N <=

300000), the number of vertices that compose the land shape.

 Each of the following N lines contain two single-space-separated

integers X and Y (-109<= X, Y <= 109), the coordinates of a

vertex. The vertices are given in a counter-clockwise order

going around the boundary of the land.

 The line after contains an integer M (0 <= M <= 300000), the

number of trees inside the land.

 Each of the following M lines contain two single-space-

separated integers I and J, the coordinates of a tree inside the

land. None of the trees will be placed on an edge of the land.

Output Format

There must be T lines of output and each will contain a single non-

negative real number, the maximum possible area that can be used

for the headquarters in the specific test case. The numbers should

always be rounded to two decimal places, and they should always

display these two decimal places even if the final value is an

integer. In the cases that there is no available land to be used, your

program should write 0.00.

Sample Input

1

6

2 0

6 0

6 5

4 7

0 4

0 2

5

2 2

3 1

4 2

5 1

5 3

Sample Output

13.00

Explanation

The image below represents the optimal division of the land

resulting in clear space for headquarters of 13 m2.

Note: An additional test case is available if you click on the "Run

Code" button.

Alice and Bob Play Sheldon's
Favorite Game

Problem Statement

Rock, Paper, Scissors, Lizard, Spock is a game, invented by Sam

Kass and Karen Bryla, that extends the Rock, Paper, Scissors game.

It is a favorite of the character Sheldon from the TV Show, The Big

Bang Theory.

The rules of the game are as follows. Each player chooses a shape

from the set {Rock, Paper,Scissors, Lizard, Spock}. If the two players

choose the same shape, they tie. Otherwise, the winner is the one

with the shape listed first in the following set of rules:

Scissors cuts Paper

Paper covers Rock

Rock crushes Lizard

Lizard poisons Spock

Spock smashes Scissors

Scissors decapitates Lizard

Lizard eats Paper

Paper disproves Spock

Spock vaporizes Rock

(and as it always has) Rock crushes scissors

Below is a graphical representation from The Big Bang Theory's wiki:

Alice and Bob also enjoy this game, and they have decided to play a

series of them. Each has a very specific strategy that they follow.

Alice's strategy is as follows:

1) If she wins a game, she keeps the same shape.

2) If she ties, she chooses a shape from one of the two that would

beat her current shape. Of these two, she chooses the one that

beats the other. For example, if she has tied when choosing Rock,

her options are Paper and Spock. Since Paper beats Spock, she

chooses Paper.

3) If she loses, she chooses a shape from one of the two that would

beat her opponent's current shape. Of these two, she chooses the

one that beats the other. For example, let's say she has lost by

choosing Rock, when her opponent chose Paper. She will then choose

fromScissors or Lizard. Since Scissors beats Lizard, she chooses Scissors.

Bob's strategy is as follows:

1) Every other turn, he chooses Spock.

2) If he won the previous turn when playing Spock, he chooses Rock.

3) If he tied the previous turn when playing Spock, he chooses Lizard.

4) If he lost the previous turn when playing Spock, he chooses Paper.

Your task is to write a program that evaluates a series of games

between Alice and Bob.

Input Format

The first line of input contains a single integer t, 1 <= t <= 50,

containing the number of test cases in the input.

Then come t lines each describing a test case, made up of a series

of games for you to evaluate. These lines have the following format:

[AliceShape] [BobShape] [n]

Where

 [AliceShape] is the shape that Alice will choose in the first game

of the series.

 [BobShape] is the shape that Bob will choose in the first game

of the series.

 [n] is an integer, 1 <= n <= 1018, indicating how many games

Alice and Bob will play in the series.

Output Format

Output will consist of a single line in the appropriate one of the

following forms:

[Player] wins, by winning [WinGames] game(s) and tying [TieGames] game(s)

Alice and Bob tie, each winning [WinGames] game(s) and tying [TieGames] game(s)

where

 [Player] is the name of the player with more wins (either "Alice"

or "Bob")

 [WinGames] is the number of games won either by the winner

or, in the case of a tie, by each player

 [TieGames] is the number of games in which the players tied

Notes:

 The output is case sensitive. The player names, for example,

must be either "Alice" or "Bob". Neither "alice" nor "BOB" will

be acceptable.

 The words are separated by a single space, and there are no

spaces before the first word in the line, nor after the last word

in the line.

Sample Input

2

Rock Spock 4

Paper Paper 1

Sample Output

Bob wins, by winning 2 game(s) and tying 1 game(s)

Alice and Bob tie, each winning 0 game(s) and tying 1 game(s)

Explanation

There are two test cases in this input:

Test Case 1

In the first game, Bob wins, since Spock vaporizes Rock.

Bob won when choosing Spock so he chooses Rock. Alice lost, so she

chooses from Paper andLizard, both of which beat Bob's last choice

of Spock. Since Lizard beats Paper, she choosesLizard.

In the second game, then, Bob wins again,

because Rock crushes Lizard.

Bob did not play Spock last turn, so he chooses Spock next. Alice lost,

so she chooses fromPaper and Spock, both of which beat Bob's last

choice of Rock. Since Paper beats Spock, she chooses Paper.

In the third game, Alice wins, since Paper disproves Spock.

Bob lost when choosing Spock so he chooses Paper. Alice won, so she

continues playingPaper.

In the fourth game, they tie by both choosing Paper.

Test Case 2

This test case consists of a single game in which both players

play Paper.

Eat, Sleep, Drink, Code

Problem Statement

This challenge is sponsored by SyncFusion.

Alice has recognized that strategy is key for success in IEEEXtreme.

Your task is to help her by writing a program that will calculate the

maximum score that she can earn in marathon competitions like

Xtreme.

Alice starts the competition with a certain energy level. She can

only attempt a problem if her energy level prior to starting the

problem is greater than or equal to the energy required by the

problem. Furthermore, if she attempts to solve the problem, her

energy level after the hour is reduced by the energy required by the

problem.

Alice wants you to assume that every hour a problem is released,

and she can make the following decisions:

 Attempt to solve the problem. She is able to accurately predict

how many points she will earn by attempting the problem.

 Skip the problem and sleep. Note that she will not come back to

this problem later. She will gain a fixed amount of energy by

doing so.

 Drink a caffeinated cola and attempt the problem, if she has

drinks remaining. She will gain a fixed amount of

energy immediately. She can only choose this option if her

resulting current energy level would be greater than or equal to

the energy level required by the problem. As usual she will

expend the energy required to solve the problem. In addition,

as the caffeine wears off, she will lose a certain amount of

energy units exactly two hours later.

Notes:

 It is ok for her energy level to become negative after losing the

points due to the cola consumption. However, she will need to

boost her energy by sleeping or drinking additional cola before

she will be able to solve a problem.

 She can only drink one cola per hour.

 If she drinks a cola, she must attempt the problem.

 For each hour that she sleeps and skips a problem, she gains

the fixed amount of energy. Thus, if she sleeps for two

consecutive hours, she will gain twice as much energy as if she

slept for one hour. If she sleeps for three consecutive hours,

she will gain three times as much energy, etc.

Input Format

The first line of input contains an integer k, 1 <= k <= 20, which

indicates how many test cases are present.

Each test case then has the following format. The first line of the

test case consists of the following:

[Hours] [Energy] [Sleep] [DrinkCount] [Drink] [Crash]

Where

 [Hours] gives the length of the contest in hours, 1 <= [Hours]

<= 168. (Alice envisions the day when Xtreme is a week-long

contest!)

 [Energy] is Alice’s energy level at the beginning of the contest,

0 <= [Energy] <= 107.

 [Sleep] is the amount of energy that Alice gains by skipping a

problem and sleeping, 1 <= [Sleep] <= 106.

 [DrinkCount] is a count of colas that Alice has at the start of

the contest, 0 <= [DrinkCount] <= 24.

 [Drink] is the initial boost that Alice receives from drinking a

cola, 1 <= [Drink] <= 106.

 [Crash] is the amount of additional energy that Alice loses two

hours after drinking a cola, 1 <= [Crash] <= 106.

Then there follow [Hours] lines, each describing a problem, and

listed in the order in which the problem is released, i.e. the problem

on the first line is released at the start of the contest, the second

problem is released one hour later, the third problem is released an

hour after that, etc. These lines have the following format:

[EnergyRequired] [Points]

Where

 [EnergyRequired] is an integer equal to the amount of energy

that Alice will expend in attempting to solve the problem, 1 <=

[EnergyRequired] <= 107.

 [Points] is equal to the points that Alice will earn if she

attempts the problem. [Points] will be equal to an integer

chosen from the following set {10, 20, 30, 40, 50, 60, 70, 80,

90, 100}.

Output Format

For each test case, output on a separate line, a single integer equal

to maximum amount of points Alice can earn in the contest.

Sample Input

1

4 5 16 2 7 8

10 100

6 50

15 20

3 10

Sample Output

160

Explanation

There is only one test case in the sample input. For this test case,

the contest lasts 4 hours, Alice’s initial energy level is 5, she gains

16 energy units by sleeping, she has 2 colas, she gains a boost of 7

energy units by drinking a cola, but then loses 8 energy units after

two hours.

In order to solve the first problem, she drinks a cola in order to

boost her energy level to 12. She can then solve the first problem,

and earns 100 points, by doing so. The first problem takes 10

energy units to solve. Note that she will be penalized by 8 energy

units when the third problem is released as the caffeine wears off.

At the start of the second hour, then, she has 100 points, and an

energy level of 2. In order to solve the second problem, she drinks

another cola. This raises her energy level to 9. She then solves the

problem, earning 50 more points. She expends 6 energy units

solving the problem. Note that she will lose an additional 8 energy

units as the caffeine wears off prior to the release of the fourth

problem.

At the start of the third hour, she has 150 points. Her energy level

is depleted both by solving the previous problem and as the caffeine

from the first cola wears off. Thus her energy level is -5.

She decides to sleep instead of solving the third problem. Her

energy level is boosted to 11 by sleeping but reduced to 3 as the

caffeine from the second cola wears off.

She then solves the fourth problem and earns 10 more points.

This sequence of decisions maximizes her point total, so your

program should output 160, the total number of points that she

earned.

That's So Characteristically
Euler!
Problem Statement

This challenge is sponsored by the IEEE Computer Society.

Topology is a branch of mathematics that examines the shapes and

structures of objects. TheEuler characteristic is a topological label that

we can determine for an item or collection of items. For a group of

two dimensional objects, one way to define the Euler characteristic

is the number of connected objects minus the number of holes in

the objects.

The Euler characteristic has useful applications in 2D image

recognition and classification. Consider the following black and white

representations of three digits and a letter and their corresponding

Euler characteristics.

As you can see, the Euler characteristic can give a lot of information

about what a given image might or might not represent. Note that,

in this problem, we consider filled-in regions that touch diagonally

to be part of the same connected region; however, holes that only

touch diagonally are considered to be separate. Your task is to

compute the Euler characteristic (connected regions minus holes)

for a black and white image similar to those above.

Input Format

Each input contains multiple test cases. The first line of input

contains an integer t, 1 <= t <= 10.

Following this line are t test cases, each with the following format:

 The first line of the test case contains an integer n, giving the

height of the image.

 The second line of the test case contains an integer m, giving

the width of the image.

 The rest of the test case contains n lines of text. These n lines of

text contain mcharacters, each of which is either the letter 'X' or

the letter 'O'. An 'X' represents a black pixel, and an 'O'

represents a white pixel.

 The possible ranges for n and m are 1 <= n <= 1,000 and 1

<= m <= 1,000. The input will always be correctly formatted.

Output Format

The correct output for each input is a single integer per test case

(each integer on its own line) which gives the Euler characteristic

for each input image.

Sample Input

1

4

4

OOOO

OXXO

OXXO

OOOO

Sample Output

1

Explanation

The sample input contains a single image. The image contains a

single connected square region surrounded by empty space.

Thus, 1 region - 0 holes = 1.

Finite Domain Constraints
Problem Statement

A finite domain constraint is a linear equality or inequality over

integer variables. Each variable has a known and finite domain (set

of possible values). A finite domain constraint is satisfiable if each

variable can be assigned a value from its domain in a way that

makes the equality or inequality true. For example, given the finite

domain constraint:

(X + Y) = 5

with the domain of X as {1, 2, 3, 4} and the domain of Y also as {1,

2, 3, 4}, the constraint is satisfied by assigning 2 to X and 3 to Y.

Note that the constraint can also be satisfied by assigning 3

to X and 2 to Y, 1 to X and 4 to Y, and 4 to X and 1 to Y. Hence,

there are 4 distinct variable assignments that satisfy the constraint.

If we change the constraint to the inequality:

(X + Y) < 5

with the same domains, there are now 6 distinct variable

assignments that satisfy the constraint: (X = 1, Y = 1), (X = 1, Y =

2), (X = 1, Y = 3), (X = 2, Y = 1), (X = 2, Y = 2), and (X = 3, Y= 1).

Given a finite domain constraint and domains for each variable, your

task is to determine how many distinct variable assignments satisfy

the constraint.

Input Format

The input is made up of multiple test cases. Each test case ends

with a 0 on a line by itself.

The first line in each test case is an integer n, 1 <= n <= 10. n is

the number of variables in the finite domain constraint.

The next n lines are each of the form:

[Variable_Name] [Low] [High]

where:

 [Variable_Name] is the variable name

 [Low] is the lower bound of the variable's domain (inclusive)

 [High] is the upper bound of the variable's domain (inclusive)

For example:

X 1 4

means that the domain of X is {1, 2, 3, 4}. Variable names are not

repeated within the same test case.

The next line of each test case is a finite domain constraint over

those variable names.

Notes:

 The lower and upper bounds are integers from 1 to 10

(inclusive).

 The constraint will contain exactly one occurrence of either = or

<. Note that the operator <= will never appear in a constraint.

 The constraint can additionally contain parentheses, +, -, *,

variable names and integer constants.

 The constraint will be fully parenthesized so that precedence

(order of operations) is not needed.

 Each distinct symbol in the constraint will be separated from

other symbols by exactly one space.

 Each variable occurs exactly once in the constraint.

 The number of integer constants is less than or equal to the

number of variables plus one, and each constant is between -

100 and 100 (inclusive).

 When the * operator is used in a constraint, one operand will

be a constant and the other will be a variable.

 You can assume that the constraint is syntactically correct.

Output Format

For each test case, your program should output, on a line by itself,

the number of distinct variable assignments that satisfy the finite

domain constraint with the given variable domains.

Sample Input

2

X 1 4

Y 1 4

(X + Y) = 5

0

3

X 1 3

Y 2 4

Z 1 4

((X + Y) - (2 * Z)) < 5

0

4

W 2 5

X 1 3

Y 2 9

Z 1 4

((X + (Y - 3)) + (-2 * Z)) = ((5 * W) - 10)

0

Sample Output

4

35

15

Explanation

The first test case in the sample input corresponds to the first

example given in the problem statement.

Blocks Game
Problem Statement

In this problem, you will solve a puzzle from the Secret Society

Hidden Mystery Game by G5 Games. A typical board for this game

is shown here:

Each block can only move in one dimension: vertical blocks can only

move vertically and horizontal blocks can only move horizontally.

The goal of the game is to slide the yellow block out of the frame

through the hole in the frame on the right side. To do that, you

have to slide the rest of the blocks out of the way. In addition, for

this problem, you must do it in the smallest number of moves

possible.

Here are some details to constrain our game:

 Moving a block through two spaces counts as two moves.

 The task is just to find the minimum number of moves required

to win the game – the sequence of specific moves is not

important.

 The board is in form of a square.

 The yellow block is always horizontal, and it will always cover 2

spaces.

 Once the yellow block is located right next to the exit, you have

won the game. You do not need to move the yellow block off

the board.

 The blocks can only move inside the board, and movement of

any block outside the board is not permitted.

 The game is always winnable, in a finite number of moves.

Input Format

Each run of the program will process a sequence of test cases each

containing an instance of the game.

The first line of input contains a number T. T specifies the number of

test cases in the input.

Each test case is specified as follows:

On the first two lines of the test instance is an integer Y,

representing the column with the leftmost side of the yellow block

and N, giving the dimensions of the board. Since the board is always

square, N is the number of rows and the number of columns of the

board. Hence, the board coordinates can be considered as

an N x N matrix (i.e. the top left corner of the board is row 0 and

column 0). The yellow block is always located in the third row (i.e. it

is in the row labelled 2).

The third line of the test case contains an integer B representing the

number of brown blocks in the problem.

The next B lines give the location of each of the brown blocks in the

following format:

S D R C

Where

 S is an integer give the number of spaces the block covers. A

block will always fit in the board.

 D is either 'V' or 'H' designating whether the block is horizontal

or vertical

 R and C are the row and column, respectively, of the top left

square of the block

Constraints:

 1 <= T <= 5

 0 <= Y < N - 2

 4 <= N <= 6

 1 <= B <= 12

 The maximum number of unique board configurations that can

be reached in any test instance is 250,000.

Output Format

The output must be one integer for each instance of the problem on

a separate line giving the minimum number of moves required to

win the game.

Sample Input

1

0

6

3

3 V 0 2

3 V 2 5

2 H 5 2

Sample Output

9

Explanation

The input specification corresponds to the image below.

This game is winnable in 9 moves. For example, one possible

sequence of moves that wins in the shortest number of moves is:

1) Move the horizontal brown block one square to the right.

2-4) Move the left vertical block down three squares. Note that this

counts as three moves.

5-7) Move the yellow block to the right three squares.

8) Move the right vertical block down one square.

9) Move the yellow block right one square so that it is next to the

exit.

Would Be... Could Be... BST!
Problem Statement

This challenge is sponsored by IEEE Xplore.

You are given an ambiguous description of one or more binary

trees. Each key value is a non-empty string of lowercase letters,

and each key occurs in only one node in the collection. You must

decide if the description that is given must have been derived from

a single binary search tree, could have been derived from a single

binary search tree, or could not have been derived from a binary

search tree. Please refer tohttp://en.wikipedia.org/wiki/Binary_search_tree for

background information on binary search trees.

Note: The default time limits for all languages have been doubled

for this program.

Input Format

The input is made up of multiple test cases. Each test case begins

with an integer N, with 1 <= N <= 50,000. Next come N lines each

describing an edge in the collection of binary trees:

[key1] [key2]

where [key1] and [key2] are strings corresponding the key values

of two nodes, node1 andnode2, respectively, where node1 is either the

left child of node2 OR node2 is the right child ofnode1.

The last line of input following all of the test cases consists of the

number 0 on a line by itself. The total number of edges in all test

cases in a single input file will be less than or equal to 500,000.

Output Format

For each test case, you will output a single string followed by the

newline character:

 If the description given in the test case must correspond to a

binary search tree, you should output “BST!”.

http://en.wikipedia.org/wiki/Binary_search_tree

 If the description given in the test case corresponds to a binary

search tree in some instantiations but not in others, you should

output “BST?”.

 If the description given in the test case cannot describe a

binary search tree, you should output “!BST”.

Sample Input

2

alpha beta

beta gamma

2

alpha delta

alpha gamma

2

alpha beta

delta gamma

1

beta alpha

0

Sample Output

BST!

BST?

!BST

!BST

Explanation

The first test case could have been derived from three different

configurations, which are shown below. Note that all of these

configurations are binary search trees.

NOTE: Since each test case is a description of one or more binary

trees, the description for the first test case could not have come

from a configuration like the one below which is not a binary tree:

The second test case describes one of the configurations below. The

tree on the right is a binary search tree because it fulfills the binary

search tree property, (i.e. the key in each node of the tree is

greater than all the keys stored in the left sub-tree, and smaller

than all the keys in the right sub-tree). However, the configuration

on the left is not a binary search tree because the key value stored

at the root of the tree is not smaller than all the values stored in the

left sub-tree (i.e. value "gamma" of the left subtree is greater than

"delta").

The third test case describes a forest of two trees, which cannot be

a BST.

The last test case cannot be a BST.

