
CS210 with Dr. Basit Qureshi Term Project 2 Weight 10% Due: End of Tuesday December 6, 2022

The Green Computing Project

[Source: Lancaster University Center for Ecology & Hydrology, Last accessed 11 Nov 2022]

The goal for Green Computing is to reduce the carbon foot-print by increasing the energy-efficiency and reducing e-

waste. This means using environment friendly energy sources producing less waste and promoting sustainability. A lot

of work has been done in developing sustainable energy sources such as wind-farming, solar-energy etc, resulting in

green energy utilization harnessed from these sources. However, a majority of energy generation is through “brown

energy sources” which means burning fossil fuels to generate electricity. This obviously has negative impact on the

environment.

If you think computers are green, think again! Computers have Central Processing Units (CPUs) and Game Processing

Units (GPUs) in addition to other components responsible for high energy consumption. Business servers, Gaming

machines and other peripherals consume large amounts of energy for resource-demanding applications. If you use

the Internet applications such as Google Gmail, YouTube, Amazon EC2, Zoom, etc, chances are that your applications

runs on remote servers housed in large Data Centers forming the cloud. The cloud is a collection of many computer

systems/servers that work together in Data Centers. A data center may consist of thousands of computers

interconnected to work as one large computer. These Data centers, the so-called “Farms of servers” consume Giga-

watts of energy, adding a lot of carbon to the environment. You can learn about technologies created and initiatives

taken by IT giants such as Microsoft, Google, Amazon etc that reduce energy consumption in their data centers.

It is estimated that out of $250 billion per year spent on powering computers

worldwide only about 15% of that power is spent computing, the rest is

wasted idling (i.e. consumed by computers which are not in use but still

turned ON) [Source: EnergyStar]. There are many ways this problem can be

tackled. One of the solutions to address this is writing optimized algorithms

that require less energy to run on computers and systems.

In this project we are going to write a program using two-data structures,

Binary Search Trees and Hash tables. The programs implement the classical

word-count application, where you read a bunch of text file(s) in a directory

and count how many times a word appears (frequency of words) in the files.

You will conduct an empirical evaluation of the run-time of both these

programs to see which one performs better and consumes less energy. We

will be using datasets composed of e-books available as text files on

Gutenberg website [Source: Gutenberg] of varying sizes. The results would be documented in a report providing conclusive

evidence that we can effectively write better programs that are good for the environment.

https://www.lancaster.ac.uk/data-science-of-the-natural-environment/blogs/green-computing-a-contribution-to-save-the-environment
https://www.youtube.com/watch?v=LmfvUiJ6tB8
https://www.google.com/about/datacenters/cleanenergy/
https://www.datacenterfrontier.com/cloud/article/11428098/10-gigawatts-amazon-hits-milestone-in-renewable-energy-purchasing
https://www.energystar.gov/
https://www.gutenberg.org/

1. Project API
Your project implements five classes namely NodeBST, BST, NodeHT, HT and Solution. The classes NodeBST, BST

implement a Binary Search Tree Data Structure. The classes NodeHT, HT implement the Hash Table with separate

Chaining method for collision resolution. The class provides the main method that triggers the appropriate methods.

Your program takes input using command line arguments and reads text files from a directory.

The following provides an API for your project.

NodeBST Description

 String key;

 int frequency;

 NodeBST left;

 NodeBST right;

// a unique string keyword read from file;

// Frequency for the word stored in key;

// Node left

// Node right

NodeBST ()

NodeBST (,,,)

String toString()

// default constructor

//override constructor as necessary. You can edit the params as needed.

//returns a String with the contents of the Node as follows:

Key, Frequency

//You can add additional methods setter/getters etc

The following is the API for the BST class. This implements a Binary Search Tree consisting of Nodes from the Node

class.

BST Description

NodeBST Root;

int size;

// Anchors the Root of the Tree

// Maintains the size of the Tree

BST();

insert(String key)

int search(String key)

void remove(String key)

void printAll()

// default constructor

// inserts the key in the tree if it is non-existent. Otherwise, the

key/value (frequency) is updated/incremented.

//searches for the key in the BST, returns the frequency or -1 (if not

found).

//Searches for the key in the BST and removes the node.

//Prints ALL the keys with their frequencies. Essentially calls

NodeBST.toString()

We suggest that you modify/edit the BST implementation provided at:

https://github.com/basit388/cs210/tree/master/Trees/src/BST

The following is the API for the NodeHT class which stores a Hash table node.

NodeHT Description

String key;

int count;

NodeHT next;

// a unique string keyword read from file;

// Frequency for the word stored in key;

// NodeHT next node pointer

NodeHT()

String toString()

// default constructor

//returns a String with the contents of the NodeHT as follows:

Key, Frequency

//You can add additional methods setter/getters etc

The following is the API for the HT class which implements a Hash Table with chaining method.

HT Description

Node HT [] Table;

int size;

// an array of size 997 of type NodeHT.

// Stores the size (number of nodes)

https://github.com/basit388/cs210/tree/master/Trees/src/BST

NodeHT next; // NodeHT next node pointer

HT()

int HashCode(String key,

int HashFunctionNo)

void insert(String key)

int Search(String key)

Remove(String key)

void printAll()

// default constructor. Initializes the Array Table and sets size to 0.

//Generates a HashCode for the provided string using Hash function Number:

1. f(x) = x % 997

2. f(x) = x % 463 [OPTIONAL]

3. f(x) = x % 107 [OPTIONAL]

//inserts a new node at the beginning if key is non-existent; Otherwise, the

key/value (frequency) is updated/incremented.

//searches for the key in the HT, returns the frequency or -1 (if not found).

//Searches for the key in the HT and removes the node.

//Prints ALL the keys with their frequencies. Essentially calls

NodeHT.toString()

All students are expected to implement Hash function 1. Implementation hash functions 2 and 3 are optional.

The following is the API for the Solution class. This class implements the main method, makes appropriate data

Input/Output calls and implements data structures and all necessary method calls.

Solution Description

//Attributes NA Not applicable

main(//arguments) Implements the main method; reads data from console/files, processes

information and make appropriate calls as necessary.

You may add other methods as necessary

You can write your program using an IDE of your choice.

2. Running your program
The program runs from console with the following parameters:

Usage:

java -jar [Solution] [1 for BST] [Directory containing files] [Search keywords]

or

java -jar [Solution] [2 for HT] [Directory containing files] [Hash Function No] [Search keywords]

Sample Input with BST and relevant output:

Solution 2 /mydir the hello

Start time: 290182692

Started reading files from directory: mydir

Loaded all files in BST

End time: 292785317

Time taken: 3022.609 milliseconds

Start time: 292785319

Searching key: hello

End time: 292785322

Time taken: 2.103 milliseconds

the 2837

Start time: 292785326

Searching key: the

End time: 292785329

Time taken: 1.819 milliseconds

hello 137

Sample Input with HT and relevant output:

Solution 2 /mydir 1 the hello

Start time: 290182692

Started reading files from directory: mydir

Using Hash function: 1

Loaded all files in HT

End time: 292785317

Time taken: 3037.609 milliseconds

Start time: 292785319

Searching key: the

End time: 292785322

Time taken: 2.103 milliseconds

the 2837

Start time: 292785326

Searching key: hello

End time: 292785329

Time taken: 1.819 milliseconds

hello 137

3. Generating and Collecting Data
Step 1. Generate Dataset

To generate data from this empirical study, select 5 to 20 books from the Gutenberg repository available at this page

and download these as text format (Plain text UTF-8). Describe these files here

FileName Book Name Book URL File Size (Bytes)

Now make 3 datasets as follows

1. Make a directory ds1 and copy the one file in this directory

2. Make a directory ds2 and copy the 3-5 files in this directory

3. Make a directory ds3 and copy all of the files in this directory

Step 2. Provide details about your computer

Write details about your computer

Hardware Example Your input here
Type of PC - Model Apple / Wintel

CPU Intel i7

of cores 8
Max core frequency 2.2 Ghz

RAM 16 GB

Operating System macOS Mojave /
Windows etc

https://www.gutenberg.org/browse/scores/top#books-last1

Used Memory 12.3GB
Remaining Memory About 4GB

CPU usage 1%

Disk type HDD/SSD

Disk capacity ?
Virtual Memory used Windows; Mac

Power Supply rating (P) Watts?

For mac: Check “About this mac”

For windows: Right click on “My Computer” Properties

3. Run your program and collect data

Run the program for the text files according to the following, and complete the observation table 1. This needs to be

completed individually. It is important that you record the data correctly.

Data Structure Dataset Loading/reading time

BST Ds1

BST Ds2

BST Ds3
HT Ds1

HT Ds2

HT Ds3

Search time for queries on DS1

Query BST (time in milli
seconds)

HT (time in milli
seconds) with
HashFunction1

HT (time in milli
seconds) with
HashFunction2

HT (time in milli
seconds) with
HashFunction3

be
and

sea

the
four

baby

age
toward

property

shoulder

 Total: Total:

Search time for queries on DS2

Query BST (time in milli
seconds)

HT (time in milli
seconds) with
HashFunction1

HT (time in milli
seconds) with
HashFunction2

HT (time in milli
seconds) with
HashFunction3

be

and

sea

the
four

baby

https://answers.microsoft.com/en-us/windows/forum/all/physical-and-virtual-memory-in-windows-10/e36fb5bc-9ac8-49af-951c-e7d39b979938#:~:text=Virtual%20Memory%20or%20Page%20File,(left%20screenshot%2C%20below).
https://osxdaily.com/2007/05/16/quickly-check-mac-os-xs-virtual-memory-usage/#:~:text=You%20can%20also%20see%20some,under%20the%20%E2%80%9CMemory%E2%80%9D%20tab.

age
toward

property

shoulder

 Total: Total:

Search time for queries on DS3

Query BST (time in milli
seconds)

HT (time in milli
seconds) with
HashFunction1

HT (time in milli
seconds) with
HashFunction2

HT (time in milli
seconds) with
HashFunction3

be

and

sea
the

four

baby

age

toward

property

shoulder
 Total: Total:

4. Report your results
Write a short report covering the following. Students are expected to use the IEEE Conference Template to write

their report.

I. Introduction: In this section provide some background about Big Oh run-time analysis methodology. Explain why

you would like to evaluate the run-time of BST and HT algorithms. Briefly write about the contribution of your work.

II. Experimental Evaluation and Results: Conduct the experiments as stated above.

III. Run time Analysis and discussion: Write a few paragraphs supported by visualization (graphs, diagrams etc) to

analyze and discuss your results. Answering the following can help write a good quality report:

Which data structure works faster for the smallest dataset? Why? Consider the Big-Oh runtime for both insert
algorithms to provide your answer.

Which data structure works faster for the largest dataset? Why? Consider the Big-Oh runtime for both insert
algorithms to provide your answer.

For DS1, which keyword search query resulted in the largest time? Argue why was it largest for BST and/or HT?
For DS2, which keyword search query resulted in the largest time? Argue why was it largest for BST and/or HT?

For DS3, which keyword search query resulted in the largest time? Argue why was it largest for BST and/or HT?

Determine the keyword at the root of the BST when you run ds1. What time would it take to search this keyword?
Why is it fast?

Compare your results with those of your group mate.
For any of these data structures and algorithm, did you notice the impact of the computers processing speed?
Why or why not?
Compare your results with those of your group mate.
Are the results similar for the same keyword(s) you searched in ds1, ds2 and ds3? Why or why not?

IV. Compute the power usage on your computer during this experimentation

https://www.ieee.org/content/dam/ieee-org/ieee/web/org/conferences/conference-template-a4.docx

The energy E is measured in kilowatt-hours (kWh) per day. This is equal to the power P in watts (W) times number of

usage hours per day t divided by 1000 watts per kilowatt, given as:

𝑬 =
𝑷 ∗ 𝒕

𝟏𝟎𝟎𝟎

Where E the energy, P is the power, t is the time in hours. Compute the total energy cost of running this

experimentation for BST and HT.

Note: Be sure to convert seconds to hours before computing E.

Data Structure Total time (hours) Energy Consumption (kWh)

BST – ds1

BST – ds2

BST – ds3
HT – ds1

HT – ds2

HT – ds3

V. Conclusions

Write a few words drawing conclusions from this experimental study. Based on this evaluation, write about the best

data-structure and search algorithm that performs better and consume less energy.

Evaluation

You are allowed to work as a group with maximum 2 members in a group. Your work’s evaluation would be based

on Code inspection and successful execution of test cases. The instructor reserves the right to determine the scores

of each test case.

Upload 4 files to LMS as follows:

• YourID.jar

• Yourids_code.zip (contains all IDE project files… java, jar etc; no class files please)

• Yourids_Report.docx (or pdf file containing your report)

• Yourids_Data.docx (File containing evaluation data.)

Code Inspection:

The code would be inspected by the instructor. The instructor would determine the score to be given for code

inspection. Generally, a readable code (indentation, clear scope definition) is required. For this project, there are no

limitations on time and memory usage.

Instructor reserves the right to use appropriate tools to detect plagiarism. If the similarity of your submission is

more than 30%, you will be awarded a ZERO in the project.

Submission Dead-Line:

The submission deadline is final. Late Submissions will be awarded ZERO points.

Important Notes:

• It is the student’s responsibility to check/test/verify/debug the code before submission.

• It is the student’s responsibility to check/test/verify all submitted work (including jar files)

http://lms.psu.edu.sa/

• It is the student’s responsibility to verify that all files have been uploaded to the LMS.

• After an assignment/project has been graded, re-submission with an intention to improve an assignments

scores will not be allowed.

• After the assignment/project has been graded, the instructor will post test-cases used for grading on the

website.

• The Instructor has the right to share project execution reports that may have been auto-generated on the

course website.

Useful resources

Tutorials on using command line arguments

Reading all files in a folder

Grading Rubrics

The grading for this project is relative (Not absolute), click on the link to watch/read more about relative grading. To

assess your work, we will use the following grading rubrics:

Item Good Fair Poor

Overall Report quality A comprehensive report
providing a thorough
introduction, along with
appropriate references.

Fairly written report
providing an introduction
with some references

Minimal work or no
submission.

Downloaded and
generated datasets

A good variation of files
selected for datasets

Only 5 files selected Less than 5 files selected

Recording experimental
data

Complete experimental
documentation populating
all tables

Not all experimental work
is completed

Only a few experiments
completed (or no
submission)

Visual Used, graphs charts etc. to
highlight the results

Few charts/graphs added No visual representation
of data

Discussion of results A thorough run-time
analysis of data structures
and algorithms used in the
study with appropriate
references. Detailed
discussion analyzing the
results obtained from the
experimental study. Use
of Graphs, plots, charts
etc in a meaningful way.

Listed answers to the
provided questions only.
Few visual aids shown.
Material copied from
external resource with
minimal effort in writing
the report.

Minimal or no work
submitted. Material
copied from external
resource without due
diligence (plagiarism).

Use of IEEE Template Used the IEEE Conference
paper format.

Not used IEEE template,
but report is well
formatted.

Poor formatting / no work
submitted.

https://ieeepsu.org/cs/
https://www.tutorialspoint.com/how-to-read-data-from-all-files-in-a-directory-using-java
https://study.com/academy/lesson/absolute-vs-relative-grading-in-the-classroom.html

	1. Project API
	2. Running your program
	3. Generating and Collecting Data
	4. Report your results

