
© 2024 - Dr. Basit Qureshi

REPLICATION	&	FAULT	
TOLERANCE

TOPICS
• The two generals problem
• Byzantine Generals problem
• Failure model
• Fault tolerance and availability
• Replication
• Ordering

2© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

THE	2	GENERALS	
PROBLEM

THE	2	GENERALS	PROBLEM
• The Two Generals' Problem

is a thought experiment and
theoretical problem in Dist.
Systems.

• The city’s defenses are
strong, and if only one of the
two armies attacks, the army
will be defeated.

• However, if both armies
attack at the same time,
they will successfully capture
the city.

4© 2024 - Dr. Basit Qureshi

https://finematics.com/two-generals-problem/

THE	2	GENERALS	PROBLEM
• Need to coordinate

attack
• Communicate by

sending a messenger
through enemy territory.

• Agree on a time to
launch an attack.

• Messenger could be
captured!

5© 2024 - Dr. Basit Qureshi

https://finematics.com/two-generals-problem/

THE	2	GENERALS	PROBLEM
PROBLEM
• General1 sends a message.

Messenger is captured->
Message Not received.

• General1 sends a message.
General2 receives the
message. On the way back,
the Messenger is captured ->
Not received.

• Cannot confirm attack, unless
messenger reaches General1.

6© 2024 - Dr. Basit Qureshi

THE	2	GENERALS	PROBLEM
SOLUTION?
• OPTION 1: General 1 always attacks, even if no response is received?

• Send lots of messengers to increase probability that one will get through
• If all are captured, general 2 does not know about the attack, so general 1

loses

• OPTION 2: General 1 only attacks if positive response from general 2 is
received?

• Now general 1 is safe BUT general 2 knows that general 1 will only attack if
general 2’s response gets through

• Now general 2 is in the same situation as general 1 in option 1

7© 2024 - Dr. Basit Qureshi

THE	2	GENERALS	PROBLEM
The problem is that no matter how many messages are exchanged,

neither general can ever be certain that the other army will also turn up
at the same time.

Repeated sequence of back-and-forth acknowledgements can build up
but the generals cannot reach certainty by exchanging any finite
number of messages.

8© 2024 - Dr. Basit Qureshi

THE	2	GENERALS	PROBLEM
An analogy: Ordering food using a food-delivery app
• Customer Orders food
• The bank charges payment
• The restaurant dispatches food

9© 2024 - Dr. Basit Qureshi

Restaurant Bank outcome

Doesnot dispatch food Does not charge Nothing delivered

Dispatches food Does not charge Restaurant looses money

Doesnot dispatch food Charges Customer complains

Dispatches food Charges Everyone is happy

© 2024 - Dr. Basit Qureshi

THE	BYZANTINE	
GENERALS	PROBLEM

THE	BYZANTINE	GENERALS	PROBLEM
• A game theory problem: How do decentralized parties arrive at a

consensus without a trusted central party?
• Similar to Two Generals' Problem

11© 2024 - Dr. Basit Qureshi

Differences
• 3 or more armies wanting to capture a city
• Generals communicate through messengers
• We assume messengers cannot be captured
• Problem: Some generals can be traitors

https://dltlabs.medium.com/the-byzantine-generals-problem-8552e24abe02

THE	BYZANTINE	GENERALS	PROBLEM
• Generals behavior

• A “honest” general colludes with other generals to attack the city
• A “traitor” general deliberately misleads and confuses others

• 3 generals
• Gen1 to Gen2 and Gen3: attack
• Gen2 to Gen3: retreat!

12© 2024 - Dr. Basit Qureshi

Gen2: Traitor
Gen3: Which message to trust?

THE	BYZANTINE	GENERALS	PROBLEM
• Generals behavior

• A “honest” general colludes with other generals to attack the city
• A “traitor” general deliberately misleads and confuses others

• 3 generals
• Gen1 to Gen3: attack
• Gen1 to Gen2: retreat!
• Gen2 to Gen3: retreat!

13© 2024 - Dr. Basit Qureshi

Gen1: Traitor
Gen3: Which message to trust?

THE	BYZANTINE	GENERALS	PROBLEM
• Honest generals do not know which generals are traitors
• Traitor generals can collude to secretly coordinate actions
• Don’t know if honest generals are “honest”; they can be

controlled by the adversary!
• So who to Trust??

14© 2024 - Dr. Basit Qureshi

THE	BYZANTINE	GENERALS	PROBLEM
• In Dist Systems, there are complex trust relationships. To

understand, lets use an analogy:
• Online shopping

• Customer trusts Online shop and shares credit card information
• Customer trusts Online shop to deliver items

• Online shop trusts the payment service to complete the payment
• Online shop trusts the delivery to deliver products

• Payment service trusts the customer to pay dues
• Payment service trusts the online shop to complete payments

15© 2024 - Dr. Basit Qureshi

THE	BYZANTINE	GENERALS	PROBLEM
• Dis-trust?
• Online shopping

• Customer uses stolen Credit cards to pay for Online shop
• Customer suspects Online shop will deliver wrong items

• Online shop payments are declined by the payment service

• Delivery company does not deliver products
• Payment service declines payment by the customer

16© 2024 - Dr. Basit Qureshi

THE	BYZANTINE	GENERALS	PROBLEM
• In distributed systems, some systems explicitly deal with the

possibility that some nodes may be controlled by a malicious
actor, and such systems are called Byzantine fault tolerant.

• Popular with Blockchain and cryptocurrencies

17© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

FAILURE	MODEL

FAILURE	MODEL
• When designing a distributed algorithm, a system model is how

we specify our assumptions about what faults may occur.

• Failure model:
1. Network failure (e.g. loss etc)
2. Node behavior (crashes, slow etc)
3. Timing (e.g. latency, etc)

19© 2024 - Dr. Basit Qureshi

FAILURE	MODEL
• Networks are NOT reliable
• Common problems:

• Configuration errors
• Shark bites! Line damage
• Hardware failure
• Intrusions
• Power loss
• Traffic spikes
• Cellular (WAN) failure
• Government restrictions (5G banned?)

20© 2024 - Dr. Basit Qureshi

FAILURE	MODEL
Networks failure model
• Communication modes: point-to-point, unicast, multicast,

broadcast communication.
• Lets assume, we mostly use point-to-point communication

between two nodes
• Reliable link: Perfect links, messages are received 100% guaranteed.
• Fair-loss link: Message may be lost, but can be duplicated, re-ordered.

We keep re-trying until all messages eventually get through
• Arbitrary link: A malicious adversary interferes with the messages (e.g.

spoofing, replay etc).

21© 2024 - Dr. Basit Qureshi

We always assume that Network partitions can occur

FAILURE	MODEL
Node behavior model
• A node in a distributed system exhibits these behavior

• Crash-stop: A node is faulty if it crashes. After crashing it stops
executing forever.

• Crash-recovery: A node may crash at any moment losing all of its
memory. A restart is possible, however all memory operations are lost.
Local disk storage survives the crash.

• Byzantine: A node is faulty if it does not follow algorithm/rules (faulty,
malicious).

22© 2024 - Dr. Basit Qureshi

A node that is not faulty is “Correct”

FAILURE	MODEL
Timing (Synchrony) model
• We assume one of the following for network and node behavior

• Synchronous: Messages are delivered within an upper bound time
frame. Node execute the tasks/algorithm with a known speed.

• Partial-Synchronous: The system is asynchronous for a short/finite (but
unknown) periods of time. It is synchronous otherwise.

• Asynchronous: Messages can be delayed. Nodes can “pause”. No
guarantees to deliver messages at all.

23© 2024 - Dr. Basit Qureshi

FAILURE	MODEL
• Fault tolerant distributed systems need address:
• Networks failure

• Reliable link, Fair-loss link, Arbitrary link
• Node behavior

• Crash-stop, Crash-recovery, Byzantine
• Timing (Synchrony)

• Synchronous, Partial-Synchronous, Asynchronous

24© 2024 - Dr. Basit Qureshi

© 2024 - Dr. Basit Qureshi

FAULT	TOLERANCE	AND	
AVAILABILITY

FAULT	TOLERANCE	AND	AVAILABILITY
• Availability

• Online store wants to sell products 24/7
• Service unavailability = LOSS of money

• Availability = uptime = % of time service is functional
• “Two nines” = 99% up = down 3.7 days/year
• “Three nines” = 99.9% up = down 8.8 hours/year
• “Four nines” = 99.99% up = down 53 minutes/year
• “Five nines” = 99.999% up = down 5.3 minutes/year

26© 2024 - Dr. Basit Qureshi

Service-Level Objective (SLO): e.g. “99.9% of requests in a day get a response in 200 ms”
Service-Level Agreement (SLA): contract specifying some SLO, penalties for violation

FAULT	TOLERANCE	AND	AVAILABILITY
• Case-study: A complete History of Amazon AWS outages
• A good resource / time-line for AWS service failures/outages

27© 2024 - Dr. Basit Qureshi

https://awsmaniac.com/aws-outages/

FAULT	TOLERANCE	AND	AVAILABILITY
• Achieving High Availability => Fault tolerance

• Failure: system as a whole isn’t working
• Fault: some part of the system isn’t working

• Node fault: crash (crash-stop/crash-recovery), Byzantine?
• Network fault: dropping or significantly delaying messages

• Fault tolerance:
• System as a whole continues working, despite faults (up to some maximum

number of faults)

• Single point of failure (SPOF):
• Node/network link whose fault leads to failure

28© 2024 - Dr. Basit Qureshi

FAULT	TOLERANCE	AND	AVAILABILITY
Failure detection

Goal: Detect failure before it happens!

Problem: Cannot tell the difference between crashed node, temporarily
unresponsive node, lost message, and delayed message

29© 2024 - Dr. Basit Qureshi

FAULT	TOLERANCE	AND	AVAILABILITY
Failure detection
• Synchronous systems: Perfect timeout-based failure detector

program can exist only in a synchronous crash-stop system with
reliable links.

• Partial-Synchronous systems:
• Temporarily label a node “crashed”, even though it is “correct”
• Temporarily label a node “correct”, even though it is “crashed”
• Eventually label a node “crashed”, if and only if, it is “crashed”
• Detection may not be immediate, and may require various timeouts

30© 2024 - Dr. Basit Qureshi

The additional cost of achieving higher availability exceeds the cost of occasional downtime.
So accepting a certain amount of downtime can be economically acceptable?!!?

© 2024 - Dr. Basit Qureshi

REPLICATION

REPLICATION
• Replication = An object has identical copies, each maintained

by a separate server
• Copies are called “replicas”

•Why replication?
• Fault-tolerance: With k replicas of each object, can tolerate failure of any (k-1)

servers in the system
• Load balancing: Spread read/write operations out over the k replicas => load

lowered by a factor of k compared to a single replica
• Replication => Higher Availability

32© 2024 - Dr. Basit Qureshi

REPLICATION
§ Replication is necessary for:

1. Improving performance
• A client can access nearby replicated copies and save latency

33© 2024 - Dr. Basit Qureshi

REPLICATION
§ Replication is necessary for:

2. Increasing the availability of services
• Replication can mask failures such as server crashes and network

disconnection

34© 2024 - Dr. Basit Qureshi

REPLICATION
§ Replication is necessary for:

3. Enhancing the scalability of systems
• Requests to data can be distributed across many servers, which

contain replicated copies of the data

35© 2024 - Dr. Basit Qureshi

REPLICATION
§ Replication is necessary for:

4.Securing against malicious attacks
• Even if some replicas are malicious, security of data can be

guaranteed by relying on replicated copies at non-compromised
servers

36© 2024 - Dr. Basit Qureshi

REPLICATION
Easy to implement. Main Challenge: Consistency!
• Server-side replication comes with a cost, which is the necessity for

maintaining consistency (or more precisely consistent ordering of updates)
• Strict Consistency
• Loose Consistency

© 2024 - Dr. Basit Qureshi 37

Bal=1000 Bal=1000

Replicated Database

Event 1 = Add $1000 Event 2 = Add interest of 5%

Bal=2000

1 2

Bal=10503 Bal=20504Bal=2100

MAINTAINING	CONSISTENCY	OF	REPLICATED	
DATA

x=0 x=0 x=0 x=0

Replica 1 Replica 2 Replica 3 Replica n

Process 1

Process 2

Process 3

R(x)b
=Read variable x;
 Result is b W(x)b

= Write variable x;
 Result is b

P1 =Process P1 =Timeline at P1

R(x)0

R(x)0

W(x)2

x=2 x=2 x=2 x=2

R(x)?R(x)2

W(x)5

R(x)?R(x)5

x=5 x=5 x=5 x=5

DATA-STORE

Strict Consistency
• Data is always fresh

• After a write operation, the update is propagated to all the replicas
• A read operation will result in reading the most recent write

• If read-to-write ratio is low, this leads to large overheads

MAINTAINING	CONSISTENCY	OF	REPLICATED	DATA	
(CONT’D)

x=0 x=0 x=0 x=0

Replica 1 Replica 2 Replica 3 Replica n

Process 1

Process 2

Process 3

R(x)b
=Read variable x;
 Result is b W(x)b

= Write variable x;
 Result is b

P1 =Process P1 =Timeline at P1

R(x)0

R(x)5

W(x)2

x=2 x=2 x=2 x=2

R(x)?R(x)3

W(x)5

R(x)?R(x)5

x=0 x=5 x=3

DATA-STORE

Loose Consistency
• Data might be stale

• A read operation may result in reading a value that was written long back
• Replicas are generally out-of-sync

• The replicas may sync at coarse grained time, thus reducing the overhead

REPLICATION
• Maintaining consistency should balance between the strictness of consistency versus

efficiency (or performance)
• Good-enough consistency depends on your application

© 2024 - Dr. Basit Qureshi 42

© 2024 - Dr. Basit Qureshi

ORDERING

ORDERING
• A consistency model is a contract between:

• The process that wants to use the data
• The data-store

• Two types
• Data-Centric: How updates are propagated across the replicas to keep them consistent
• Client-Centric: Clients connect to different replicas at different times. They ensure that

whenever a client connects to a replica, the replica is brought up to date with the replica that
the client accessed previously

44© 2024 - Dr. Basit Qureshi

ORDERING
Consistent Ordering of Operations
• We need to express the semantics of parallel accesses when shared

data are replicated
• Before updates at replicas are committed, all replicas shall reach an

agreement on a global ordering of the updates
• That is, replicas in shared data-stores should agree on a consistent ordering of

updates

45© 2024 - Dr. Basit Qureshi

ORDERING
Three major types of orderings:

• Total Ordering
• Sequential Ordering
• Causal Ordering

46© 2024 - Dr. Basit Qureshi

TOTAL	ORDERING

• What is total ordering?
• If process Pi sends a message mi and Pj

sends mj, and if one correct process delivers
mi before mj then every other correct
process delivers mi before mj

• Messages can denote replica updates
• In the example Ex1, if P1 issues the

operation m(1,1): x=x+1; and
• If P3 issues m(3,1): print(x); and
• P1 or P2 or P3 delivers m(3,1) before
m(1,1)

• Then, at all replicas P1, P2, P3 the
following order of operations are executed

print(x);
x=x+1;

m(1,1)

P1 P2 P3

m(3,1)

Ex1: Total Order

m(1,1)

P1 P2 P3

m(3,1)

Ex2: Not in Total Order

SEQUENTIAL	ORDERING

• What is sequential ordering?
• If a process Pi sends a sequence of messages m(i,1),....,

m(i,ni), and
• Process Pj sends a sequence of messages m(j,1),....,

m(j,nj),
• Then:

• At any process, the set of messages received are in
some sequential order

• Messages from each individual process should appear
in the same order sent by that process
• At every process, mi,1 should be delivered before mi,2,

which should be delivered before mi,3 and so on...
• At every process, mj,1 should be delivered before mj,2,

which should be delivered before mj,3 and so on...

m(1,1)

P1 P2 P3

m(3,1)

m(3,2)

Valid Sequential Orders

m(1,2)
m(3,3)

m(1,1)

P1 P2 P3

m(3,1)

m(3,2)

Invalid Sequential Orders, but Valid Total Order

m(1,2)
m(3,3)

CAUSAL	ORDERING
• Causal Ordering
• Consider an interaction between processes P1 and P2 operating on replicated data
x and y

50© 2024 - Dr. Basit Qureshi

ORDERING
• Causal Ordering
• If process Pi sends a message mi and Pj sends mj,

and if miàmj (operator ‘à’ is Lamport’s
happened-before relation) then any correct
process that delivers mj will deliver mi before mj

• In Ex1:
• m(1,1) and m(3,1) are in Causal Order
• m(1,1) and m(1,2) are in Causal Order

• In Ex2:
• m(1,1) and m(3,1) are NOT in Causal Order

51© 2024 - Dr. Basit Qureshi

CLIENT	CONSISTENCY	GUARANTEES
• Client-centric consistency provides guarantees for a single client for its accesses to a data-store

• Example: Providing consistency guarantees to a client process for data x replicated on two
servers. Let xi be the local copy of a data x at server Li

52

L1

L2

W(x1)0

W(x2)0

W(x1)2
x+=2

W(x1)1
x-=1

W(x1)5
x*=5

WS(x1)

x-=2

W(x2)3R(x2)5

Li = Replica i R(xi)b
= Read variable x at
 replica i; Result is b W(x)b

= Write variable x at
 replica i; Result is b

WS(xi) = Write Set

WS(x1) = Write Set for x1 = Series of ops being done at some replica that reflects how x1 was updated at L1 till this time

WS(x1;x2) = Write Set for x1 and x2 = Series of ops being done at some replica that reflects how x1 was updated at L1 and,
later on, how x2 was updated on L2

WS(x1;x2)

WS(x1)

CLIENT	CONSISTENCY	GUARANTEES
1. Monotonic Reads

2. Monotonic Writes
3. Read Your Writes

4. Write Follow Reads

MONOTONIC	READS
• This model provides guarantees on successive reads

• If a client process reads the value of data item x, then any successive read
operation by that process should return the same or a more recent value for x

L1

L2

WS(x1)

WS(x1;x2) R(x2)

R(x1)

Result of R(x2) should at least
be as recent as R(x1)

Order in which client process
carries out the operations

MONOTONIC	READS	–	PUZZLE
• Recognize data-stores that provide monotonic read guarantees

L1

L2

WS(x1)

WS(x1;x2) R(x2)6

R(x1)5

FIGURE 1

W(x2)6

L1

L2

WS(x1)

WS(x2) R(x2)6

R(x1)5

FIGURE 2

W(x2)6

L1

L2

WS(x1)

WS(x1;x2) R(x2)6

R(x1)5

FIGURE 3

W(x2)6 W(x2)7

R(x1)7WS(x2;x1)

MONOTONIC	WRITES
• This consistency model ensures that writes are monotonic

• A write operation by a client process on a data item x is completed before any
successive write operation on x by the same process
• A new write on a replica should wait for all old writes on any replica

L1

L2
WS(x1) W(x2)

W(x1)

W(x2) operation should be performed only after the
result of W(x1) has been updated at L2

L1

L2
W(x2)

W(x1)

This data-store does not provide
monotonic write consistency

READ	YOUR	WRITES
• The effect of a write operation on a data item x by a process will always be seen by a

successive read operation on x by the same process

• Example scenario:
• In systems where password is stored in a replicated data-base, the password change should

be propagated to all replicas

L1

L2
WS(x1;x2) R(x2)

W(x1)

R(x2) operation should be performed only after
propagating WS(x1) to L2

L1

L2
WS(x2) R(x2)

W(x1)

A data-store that does not provide
Read Your Write consistency

WRITE	FOLLOW	READS
• A write operation by a process on a data item x following a previous read operation on
x by the same process is guaranteed to take place on the same or a more recent value
of x that was read

• Example scenario:
• Users of a newsgroup should post their comments only after they have read the article and

(all) previous comments

L1

L2
WS(x1;x2) W(x2)

R(x1)

W(x2) operation should be performed only after all
previous writes have been propagated

WS(x1)
L1

L2
WS(x2) W(x2)

R(x1)

A data-store that does not guarantee
Write Follow Read Consistency Model

WS(x1)

SUMMARY
• The two generals problem
• Byzantine Generals problem
• Failure model
• Fault tolerance and availability
• Replication
• Ordering

© 2024 - Dr. Basit Qureshi 59

